Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 658: 124221, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38750980

ABSTRACT

Natural organisms have evolved sophisticated and multiscale hierarchical structures over time to enable survival. Currently, bionic design is revolutionizing drug delivery systems (DDS), drawing inspiration from the structure and properties of natural organisms that offer new possibilities to overcome the challenges of traditional drug delivery systems. Bionic drug delivery has contributed to a significant improvement in therapeutic outcomes, providing personalized regimens for patients with various diseases and enhancing both their quality of life and drug efficacy. Therefore, it is important to summarize the progress made so far and to discuss the challenges and opportunities for future development. Herein, we review the recent advances in bio-inspired materials, bio-inspired drug vehicles, and drug-loading platforms of biomimetic structures and properties, emphasizing the importance of adapting the structure and function of organisms to meet the needs of drug delivery systems. Finally, we highlight the delivery strategies of bionics in DDS to provide new perspectives and insights into the research and exploration of bionics in DDS. Hopefully, this review will provide future insights into utilizing biologically active vehicles, bio-structures, and bio-functions, leading to better clinical outcomes.

2.
J Nat Med ; 78(2): 439-454, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38351420

ABSTRACT

Dihydroartemisinin (DHA), a derivative of artemisinin which is primarily used to treat malaria in clinic, also confers protective effect on lipopolysaccharide-induced nephrotoxicity. While, the activities of DHA in cisplatin (CDDP)-caused nephrotoxicity are elusive. To investigate the role and underlying mechanism of DHA in CDDP-induced nephrotoxicity. Mice were randomly separated into four groups: normal, CDDP, and DHA (25 and 50 mg/kg were orally injected 1 h before CDDP for consecutive 10 days). All mice except the normal were single injected intraperitoneally with CDDP (22 mg/kg) for once on the 7th day. Combined with quantitative proteomics and bioinformatics analysis, the impact of DHA on renal cell apoptosis, oxidative stress, biochemical indexes, and inflammation in mice were investigated. Moreover, a human hepatocellular carcinoma cells xenograft model was established to elucidate the impact of DHA on tumor-related effects of CDDP. DHA reduced the levels of creatinine (CREA) (p < 0.01) and blood urea nitrogen (BUN) (p < 0.01), reversed CDDP-induced oxidative, inflammatory, and apoptosis indexes (p < 0.01). Mechanistically, DHA attenuated CDDP-induced inflammation by inhibiting nuclear factor κB p65 (NFκB p65) expression, and suppressed CDDP-induced renal cell apoptosis by inhibiting p63-mediated endogenous and exogenous apoptosis pathways. Additionally, DHA alone significantly decreased the tumor weight and did not destroy the antitumor effect of CDDP, and did not impact AST and ALT. In conclusion, DHA prevents CDDP-triggered nephrotoxicity via reducing inflammation, oxidative stress, and apoptosis. The mechanisms refer to inhibiting NFκB p65-regulated inflammation and alleviating p63-mediated mitochondrial endogenous and Fas death receptor exogenous apoptosis pathway.


Subject(s)
Antineoplastic Agents , Artemisinins , Humans , Mice , Animals , Cisplatin/toxicity , Artemisinins/pharmacology , Artemisinins/therapeutic use , Artemisinins/metabolism , Kidney/metabolism , Kidney/pathology , Oxidative Stress , Inflammation/metabolism , Apoptosis , Antineoplastic Agents/toxicity
3.
Molecules ; 29(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38338458

ABSTRACT

Porous materials are widely used as an effective strategy for the solubilization of insoluble drugs. In order to improve the solubility and bioavailability of low water-solubility drugs, it is necessary to prepare porous materials. Mannitol is one of the most popular excipients in food and drug formulations. In this study, porous mannitol was investigated as a drug carrier for low water solubility drugs. Its fabrication, drug loading, and drug release mechanisms were investigated. Porous mannitol was fabricated using the co-spray-antisolvent process and utilizing polyvinylpyrrolidone K30 (PVP K30) as the template agent. Porous mannitol particles were prepared by changing the proportion of the template agent, spraying the particles with mannitol, and eluting with ethanol in order to regulate their pore structure. In subsequent studies, porous mannitol morphology and characteristics were determined systematically. Furthermore, curcumin and ibuprofen, two poorly water-soluble drugs, were loaded into porous mannitol, and their release profiles were analyzed. The results of the study indicated that porous mannitol can be prepared using PVP K30 as a template and that the amount of template agent can be adjusted in order to control the structure of the porous mannitol. When the template agent was added in amounts of 1%, 3%, and 5%, the mannitol pore size increased by 167.80%, 95.16%, and 163.98%, respectively, compared to raw mannitol. Molecular docking revealed that mannitol and drugs are adsorbents and adhere to each other by force interaction. The cumulative dissolution of curcumin and ibuprofen-loaded porous mannitol reached 69% and 70%, respectively. The release mechanism of curcumin and ibuprofen from drug-loaded mannitol was suitable for the Korsmeyer-Peppas kinetic model. In summary, the co-spray-antisolvent method proved effective in fabricating porous materials rapidly, and porous mannitol had a remarkable effect on drug solubilization. The results obtained are conducive to the development of porous materials.


Subject(s)
Curcumin , Ibuprofen , Porosity , Curcumin/chemistry , Mannitol/chemistry , Molecular Docking Simulation , Solubility , Povidone/chemistry , Water/chemistry , Drug Carriers
4.
Ultrason Sonochem ; 103: 106787, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38310739

ABSTRACT

The study aimed to estimate the feasibility of α-cyclodextrin (α-CD), ß-cyclodextrin (ß-CD), and γ-cyclodextrin (γ-CD) to encapsulate Mosla chinensis essential oil (EO) by ultrasonic-assisted method. The physical properties variations, stabilization mechanisms, and formation processes of the inclusion complexes (ICs) were investigated using experimental methods, molecular docking, and molecular dynamics (MD) simulation. Scanning electron microscopy, fourier transform infrared spectroscopy, thermogravimetric analysis, and gas chromatography-mass spectrometry showed that the ICs were successfully prepared, which differentially improved the thermal stability and retained the chemical composition of EO. The dissolution profile showed that the Peppas model can be used to describe the diffuse release mechanism of EO. Finally, molecular docking and MD simulation theoretically confirmed the interaction and conformational changes of carvacrol (the main active component of Mosla chinensis EO) inside the cavity of CDs. The results indicate that hydrogen bonding was the primary driving force for the carvacrol spontaneous access to the cavity. Further, a binding dynamic balance occurs between carvacrol and ß-CD, whereas a bind and away dynamic balance occurs in the IC between carvacrol and α-CD, γ-CD. The comprehensive results show that the medium cavity size of ß-CD is a suitable host molecule for Mosla chinensis EO of encapsulation, release, and stabilization. A combination of experimental and theoretical calculations is useful for the pinpoint targeted design and optimization of CD molecular encapsulation of small entity molecules. ß-CD was rationally screened as a better candidate for stabilizing EO, which provides an option for a meaningful path to realistic EO applications.


Subject(s)
Cymenes , Oils, Volatile , Molecular Docking Simulation , Ultrasonics , Feasibility Studies , Spectroscopy, Fourier Transform Infrared , Solubility
5.
Int J Biol Macromol ; 254(Pt 2): 127890, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37931858

ABSTRACT

Cellulose nanocrystals (CNCs) extracted from the waste shell of Camellia oleifera Abel (C. oleifera) are gaining attention as valuable materials. In this study, CNCs were extracted from the agricultural waste shell of C. oleifera through phosphoric acid and sulfuric acid hydrolysis, respectively. Firstly, we optimized the alkaline treatment process for cellulose isolation by using response surface methodology. Furthermore, the properties of CNCs were investigated by neutralizing them with NaOH and NH3·H2O, and by dialysis in water. In addition, the characterization methods including FT-IR, TGA, AFM and TEM were used to analysis the properties of the synthesized CNCs. Finally, CNCs were studied for their application in essential oil-based Pickering emulsions. CNCs obtained from sulfuric acid showed the smallest particle size and good dispersibility. Moreover, the release profiles of essential oils in the emulsions were followed by Peppa's kinetic release model. The antibacterial activity of the emulsions against E. coli and S. aureus showed that CNCs-stabilized emulsions enhanced the antibacterial activity of essential oils. Therefore, neutralization treatments may enhance the properties of CNCs, and CNCs stabilized Pickering emulsions can enhance antibacterial activity of essential oil. This study provides insight into the potential application of CNCs derived from C. oleifera waste shells.


Subject(s)
Nanoparticles , Oils, Volatile , Cellulose/chemistry , Emulsions/chemistry , Escherichia coli , Staphylococcus aureus , Spectroscopy, Fourier Transform Infrared , Renal Dialysis , Oils, Volatile/chemistry , Anti-Bacterial Agents/pharmacology , Nanoparticles/chemistry
6.
AAPS PharmSciTech ; 24(8): 247, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030948

ABSTRACT

The purpose of this study is to develop modified particles with different structures to improve the flowability and compactibility of Liuwei Dihuang (LWDH) powder using co-spray drying technology, and to investigate the preparation mechanism of modified particles and their modified direct compaction (DC) properties. Moreover, tablets with high drug loading contents were also prepared. Particles were designed using polyvinylpyrrolidone (PVP K30) and hydroxypropyl methylcellulose (HPMC E3) as shell materials, and sodium bicarbonate (NaHCO3) and ammonium bicarbonate (NH4HCO3) as pore-forming agents. The porous particles (Ps), core-shell particles (CPs), and porous core-shell particles (PCPs) were prepared by co-spray drying technology. The key DC properties and texture properties of all the particles were measured and compared. The properties of co-spray drying liquid were also determined and analyzed. According to the results, Ps showed the least improvement in DC properties, followed by CPs, and PCPs showed a significant improvement. The modifier, because of its low surface tension, was wrapped in the outer layer to form a shell, and the pore-forming agent was thermally decomposed to produce pores, forming core-shell, porous, and porous core-shell composite structures. The smooth surface of the shell structure enhances fluidity, while the porous structure allows for greater compaction space, thereby improving DC properties during the compaction process.


Subject(s)
Povidone , Spray Drying , Hypromellose Derivatives/chemistry , Povidone/chemistry , Medicine, Traditional , Particle Size
7.
Microsc Res Tech ; 86(12): 1599-1609, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37548179

ABSTRACT

Using scanning electron microscopy, we examined the gross and ultrastructure morphology of the mandibles, labial palpi, and mandibular palpi of adult male and female Glenea cantor beetles. The morphology of these parts, both in their gross and ultrastructure, varied significantly between males and females. The lengths of the mandible, labial palpi, and mandibular palpi were clearly noticeably longer in females than in men, which is mostly related to the oviposition mechanism. In terms of the ultrastructural morphology of the mandibles, labial palpi, and mandibular palpi, seven types of sensilla were found on these parts: sensilla twig basiconica (STB I, II, III, and IV), sensilla chaetica (Scheme IV and V), Böhm's bristles (Bb), sensilla placodea (SP), sensilla trichodea (ST II), sensilla plate (SP), sensilla coeloconica (SC), and sensilla campaniformia (SCa). Females have significantly more ST I and Scheme III on their mandibles than males. The mechanical sensors SCh and Bb, olfactory sensor ST II, taste sensor STB IV, and carbon dioxide sensor and temperature and humidity sensors SC, SP, and SCa were much more developed on the labial and maxillary palpi of females compared to those of males, which further clarified the significance of the oral appendages in oviposition behavior. These findings will advance information-based technique design and the creation of information-based pest control strategies by assisting in our understanding of the host preference and oviposition behavior of adult G. cantor. RESEARCH HIGHLIGHTS: The external morphology and distribution of the oral appendages of Glenea cantor between sexes has been researched through scanning electron microscopy (SEM) for the first time. Several significant differences between males and females have been found by analyzing the oral appendages of G. cantor with SEM. The differences in the structure of oral appendages of G. cantor between sexes reflect functional differences in reproductive behaviors.


Subject(s)
Coleoptera , Humans , Animals , Male , Female , Coleoptera/ultrastructure , Sensilla/ultrastructure , Microscopy, Electron, Scanning , Bone Plates , Arthropod Antennae/ultrastructure
8.
Int J Biol Macromol ; 241: 124557, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37094644

ABSTRACT

Cellulose nanocrystals (CNC) have been extensively used in various fields due to their renewability, excellent biocompatibility, large specific surface area, and high tensile strength. Most biomass wastes contain significant amounts of cellulose, which forms the basis of CNC. Biomass wastes are generally made up of agricultural waste, and forest residues, etc. CNC can be produced from biomass wastes by removing the non-cellulosic components through acid hydrolysis, enzymatic hydrolysis, oxidation hydrolysis, and other mechanical methods. However, biomass wastes are generally disposed of or burned in a random manner, resulting in adverse environmental consequences. Hence, using biomass wastes to develop CNC-based carrier materials is an effective strategy to promote the high value-added application of biomass wastes. This review summarizes the advantages of CNC applications, the extraction process, and recent advances in CNC-based composites, such as aerogels, hydrogels, films, and metal complexes. Furthermore, the drug release characteristics of CNC-based material are discussed in detail. Additionally, we discuss some gaps in our understanding of the current state of knowledge and potential future directions of CNC-based materials.


Subject(s)
Cellulose , Nanoparticles , Cellulose/chemistry , Biomass , Nanoparticles/chemistry , Hydrolysis , Oxidation-Reduction
9.
Drug Dev Ind Pharm ; 49(2): 217-231, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36994666

ABSTRACT

OBJECTIVE: To prepare porous core-shell composite particles (PCPs) in order to improve the flowability and compactibility of powder materials for direct compaction (DC), as well as the dissolution of tablets. SIGNIFICANCE: The results obtained are meaningful to boosting the development and further research of PCPs on DC. Methods: In this study, hydroxypropyl methylcellulose (HPMC E3) and polyvinylpyrrolidone (PVP K30) were selected as shell materials, the Xiao Er Xi Shi formulation powder (XEXS) was used as the core materials, ammonium bicarbonate (NH4HCO3), and sodium bicarbonate (NaHCO3) were employed as pore-forming agent. Using co-spray drying method to prepare composite particles (CPs). Then, the physical properties and comparison between different CPs were characterized comprehensively. Finally, the different CPs were directly compacted as tablets to explore the effect on the dissolution behavior of DC tablets, respectively. RESULTS: (i) The XEXS PCPs were prepared successfully by co-spray drying, and the yield of PCPs is almost 80%; (ii) The TS values of PCP-X-P-Na, PCP-X-P-NH4, PCP-X-H-Na and PCP-X-P-Na were 5.70, 7.56, 3.98, and 6.88 times higher than that of raw material (X); (iii) The disintegration time of PCPs tablets decreased 10-25% when compared with CPs tablets; (iv) The values of Carr's index (CI), Hausner ratio (HR), Caking strength (CS), and Cohesion index (CoI) of PCP-X-H-NH4 were 19.16%, 19.29%, 40.14%, and 6.39% lower than that of X, respectively. CONCLUSIONS: The PCPs prepared by co-spray drying did improve the flowability and compactibility of powder, as well as the dissolution of tablets.


Subject(s)
Povidone , Powders , Porosity , Drug Compounding/methods , Tablets , Solubility
10.
Int J Pharm ; 634: 122638, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36702386

ABSTRACT

Recently, there has been an increase in the use of numerical simulation technology in pharmaceutical preparation processes. Numerical simulation can contribute to a better understanding of processes, reduce experimental costs, optimize preparation processes, and improve product quality. The intermediate material of most dosage forms is powder or granules, especially in the case of solid preparations. The macroscopic behavior of particle materials is controlled by the interactions of individual particles with each other and surrounding fluids. Therefore, it is very important to analyze and control the microscopic details of the preparation process for solid preparations. Since tablets are one of the most widely used oral solid preparations, and the preparation process is relatively complex and involves numerous units of operation, it is especially important to analyze and control the tablet production process. The present paper discusses recent advances in numerical simulation technology for the preparation of tablets, including drying, mixing, granulation, tableting, and coating. It covers computational fluid dynamics (CFD), discrete element method (DEM), population balance model (PBM), finite element method (FEM), Lattice-Boltzmann model (LBM), and Monte Carlo model (MC). The application and deficiencies of these models in tablet preparation unit operations are discussed. Furthermore, the paper provides a systematic reference for the control and analysis of the tablet preparation process and provides insight into the future direction of numerical simulation technology in the pharmaceutical industry.


Subject(s)
Desiccation , Hydrodynamics , Computer Simulation , Tablets , Powders , Technology, Pharmaceutical
11.
Pharmaceutics ; 14(10)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36297653

ABSTRACT

Direct compaction (DC) is considered to be the most effective method of tablet production. However, only a small number of the active pharmaceutical ingredients (APIs) can be successfully manufactured into tablets using DC since most APIs lack adequate functional properties to meet DC requirements. The use of suitable modifiers and appropriate co-processing technologies can provide a promising approach for the preparation of composite particles with high functional properties. The purpose of this review is to provide an overview and classification of different modifiers and their multiple combinations that may improve API tableting properties or prepare composite excipients with appropriate co-processed technology, as well as discuss the corresponding modification mechanism. Moreover, it provides solutions for selecting appropriate modifiers and co-processing technologies to prepare composite particles with improved properties.

12.
Int J Biol Macromol ; 208: 983-994, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35381279

ABSTRACT

The purpose of this study was to prepare chitosan/zein (CS/Zein) edible films reinforced with Mosla chinensis essential oils (EOs) nanoemulsions (NEs) and nanoparticles (NPs) in order to compare their properties. NEs and NPs containing EOs could be used to fabricate films with functional properties, and the films were prepared using a casting method. The influence of EO concentration and mixing methods on the physical, mechanical, and functional properties of the films was investigated. The results indicated that the films formulated with EO NEs generated favorable fundamental and functional characteristics with excellent mechanical properties, moisture barrier capacity, and significant antioxidant and antibacterial activity. In addition, the use of NEs-based films improved the release of bioactive compounds, and the mechanism of EO release was found to follow a first order model. In summary, EO NEs were more effective in preserving the fundamental and functional properties of CS/Zein nanocomposite edible films than NP-based films. These differences may reflect different forms and methods of dispersing EOs in NEs and NPs. This study demonstrated that NEs reinforced films could be used to enhance the effectiveness of EOs in food products and develop new strategies for their delivery and application.


Subject(s)
Chitosan , Nanoparticles , Oils, Volatile , Zein , Food Packaging/methods
13.
ACS Omega ; 7(10): 8651-8664, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35309467

ABSTRACT

Colloidal particle-stabilized emulsions have recently gained increasing interest as delivery systems for essential oils. Despite the use of silica particles in food and pharmaceutical applications, the formation and release of hydrophilic and hydrophobic silica particle-stabilized emulsions are still not well studied. Thus, in this study, the structures of hydrophilic (A200, A380, 244FP, and 3150) and hydrophobic (R202 and R106) silica were deeply characterized using the solid state, contact angle, and other properties that could affect the formation of emulsions. Following that, Mosla chinensis essential oil emulsions were stabilized with different types of silica, and their characteristics, particularly their release behavior, were studied. Fick's second law was used to investigate the mechanism of release. Additionally, six mathematical models were employed to assess the experimental data of release: zero-order, first-order, Higuchi, Hixson-Crowell, Peppas, and Page models. The release mechanism of essential oils demonstrated that diffusion was the dominant mechanism, and the fitting results for the release kinetics confirmed that the release profiles were governed by the Higuchi model. The contact angle and specific surface area were the key properties that affect the release of essential oils from emulsions. Hydrophilic A200 was found to be capable of delivering essential oils more efficiently, and silica particles could be extended to achieve the controlled release of bioactives. This study showed that understanding the impact of silica particles on the release behavior provided the basis for modulating and mapping material properties to optimize the performance of emulsion products.

14.
Molecules ; 28(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36615232

ABSTRACT

Essential oils (EOs) are primarily isolated from medicinal plants and possess various biological properties. However, their low water solubility and volatility substantially limit their application potential. Therefore, the aim of the current study was to improve the solubility and stability of the Mosla Chinensis (M. Chinensis) EO by forming an inclusion complex (IC) with ß-cyclodextrin (ß-CD). Furthermore, the IC formation process was investigated using experimental techniques and molecular modeling. The major components of M. Chinensis 'Jiangxiangru' EOs were carvacrol, thymol, o-cymene, and terpinene, and its IC with ß-CD were prepared using the ultrasonication method. Multivariable optimization was studied using a Plackett-Burman design (step 1, identifying key parameters) followed by a central composite design for optimization of the parameters (step 2, optimizing the key parameters). SEM, FT-IR, TGA, and dissolution experiments were performed to analyze the physicochemical properties of the ICs. In addition, the interaction between EO and ß-CD was further investigated using phase solubility, molecular docking, and molecular simulation studies. The results showed that the optimal encapsulation efficiency and loading capacity of EO in the ICs were 86.17% and 8.92%, respectively. Results of physicochemical properties were different after being encapsulated, indicating that the ICs had been successfully fabricated. Additionally, molecular docking and dynamics simulation showed that ß-CD could encapsulate the EO component (carvacrol) via noncovalent interactions. In conclusion, a comprehensive methodology was developed for determining key parameters under multivariate conditions by utilizing two-step optimization experiments to obtain ICs of EO with ß-CD. Furthermore, molecular modeling was used to study the mechanisms involved in molecular inclusion complexation.


Subject(s)
Oils, Volatile , beta-Cyclodextrins , Oils, Volatile/chemistry , Molecular Docking Simulation , Research Design , Spectroscopy, Fourier Transform Infrared , beta-Cyclodextrins/chemistry , Solubility , Calorimetry, Differential Scanning , 2-Hydroxypropyl-beta-cyclodextrin/chemistry
15.
Pharmaceutics ; 13(6)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070708

ABSTRACT

It is necessary to prepare porous lactose in order to improve the dissolution behavior of insoluble active ingredient. In this study, polyvinylpyrrolidone K30 (PVP K30) was firstly utilized as a templating agent with different use levels in preparing porous lactose. Then, the physical properties were profoundly characterized. Finally, the porous lactose was also employed as a health functional food/drug carrier to explore the effect on the dissolution behavior of curcumin. The results confirmed that (i) porous lactose was successfully prepared using PVP K30 as templating agent; (ii) PVP K30 significantly improved the yield of lactose in the spray drying; (iii) the improved powder properties of porous lactose were more conducive to the downstream operating process for the preparation of health functional food or drug; and (iv) the porous lactose significantly improved the dissolution behavior of curcumin. Therefore, the results obtained are beneficial to boosting the development of porous materials.

16.
Curr Drug Deliv ; 18(4): 487-499, 2021.
Article in English | MEDLINE | ID: mdl-32735520

ABSTRACT

BACKGROUND: Essential oils are poor aqueous solubility and high volatility compounds. The encapsulation of essential oils with Cyclodextrins (CDs) can protect them from adverse environmental conditions and improve their stability. Therefore, increasing the functional capabilities of essential oils when they were used as additives in pharmaceutical and food systems. Additionally, the release of active compounds is an important issue. However, there were few studies about the effect of different CDs on the release of drugs after encapsulation. Therefore, the information on the study of release models is considerably limited. OBJECTIVE: This study aimed to (i) characterize the physico-chemical properties and release behavior of myrcene encapsulated in the four different shell matrices of α-CD, ß-CD, γ-CD and 2-hydroxypropyl-ß- cyclodextrin (HP-ß-CD), which were selected from the perspective of stability, and (ii) determine the release mechanism of myrcene in Inclusion Complexes (ICs). METHODS: ICs of myrcene and four CDs were prepared by freeze-drying. The physico-chemical properties of ICs were fully characterized by laser diffraction particle size analyzer, Scanning Electron Microscope (SEM), Fourier-Transform Infrared spectroscopy (FT-IR) and Differential Scanning Calorimeter (DSC). The release behaviors of ICs at 50, 60, 70 and 80 °C were determined and described by zeroorder or first-order kinetics with the Henderson-Pabis, Peppas, Avrami and Page mathematical models. Moreover, the possible binding modes of ICs were identified with molecular modelling technique. RESULTS: Firstly, the structure of Particle Size Distribution (PSD), FT-IR, DSC and SEM showed that (i) CDs could effectively encapsulate the myrcene molecules, and (ii) the release kinetics were well simulated by Avrami and Page models. Secondly, the release rates of the ICs experienced an unsteady state in the early stage, and gradually became almost constants period after 20 hours. Except that the release of myrcene in γ-CD/myrcene belonged to the first-order kinetic, the release models of the remaining three ICs belonged to diffusion mode. Thirdly, the calculated binding energies of the optimized structures for α-CD/myrcene, ß-CD/myrcene, γ-CD/myrcene, and HP-ß-CD/myrcene ICs were -4.28, -3.82, -4.04, and -3.72 kcal/mol, respectively. Finally, the encapsulation of myrcene with α-CD and ß-CD was preferable according to the stability and release characteristics. CONCLUSION: The encapsulation of myrcene was profoundly affected by the type of CDs, and the stability could be improved by complexation with suitable CDs. The binding behavior between guest and CD molecules, and the release profile of the guest molecules could be effectively explained by the kinetics parameters and molecular modelling. This study can provide an effective basis and guide for screening suitable shell matrices.


Subject(s)
Cyclodextrins , Drug Carriers , Drug Liberation , Oils, Volatile , 2-Hydroxypropyl-beta-cyclodextrin , Calorimetry, Differential Scanning , Freeze Drying , Solubility , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
17.
J AOAC Int ; 103(4): 1148-1159, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-33241331

ABSTRACT

BACKGROUND: Ophiopogonis radix and Liriopes radix are well known for the treatment of dry coughs and phthisis. Liriopes radix is occasionally used as a substitute for Ophiopogonis radix in various prescriptions due to the extremely similar pharmacological activities and clinical efficacies, but they are regarded as two different remedies in the Chinese Pharmacopoeia. Accordingly, the establishment of a reliable analytical approach for the discrimination and quality evaluation of Ophiopogonis and Liriopes is required. OBJECTIVE: To establish a simple, accurate, and reliable method that can simultaneously determine multiple components in Ophiopogonis radix and Liriopes radix. To comprehensively compare the chemical compositions of the two herbs and find markers for discrimination and quality assessments. METHOD: An HPLC-ESI-triple quadrupole (QQQ)-MS/MS method was developed for simultaneous characterization and quantification of chemical components in the two herbs. The results were further analyzed by PLS discriminant analysis to provide more information about the chemical differences, as well as to evaluate the quality of each sample. RESULTS: A total of 23 compounds have been characterized and quantified in 31 batches of herbs from different geographical regions, among which liriopesides B, sprengerinin A, ophiopogonin B, and ophiopogonanone E contribute mostly. The contents of homoisoflavonoids were much higher in Ophiopogonis radix than in Liriopes radix, but the levels of steroidal saponins followed a contrary trend. CONCLUSIONS: Simultaneous determination of multiple components by HPLC-QQQ-MS/MS coupled with chemometrics analysis is an acceptable strategy to evaluate and control the quality of Ophiopogonis radix and Liriope radix. HIGHLIGHTS: Simultaneous determination of 12 steroidal saponins and 11 homoisoflavonoids in both Ophiopogonis radix and Liriope radix by using HPLC-QQQ-MS/MS in positive ion mode, as well as the quality control study.


Subject(s)
Drugs, Chinese Herbal , Ophiopogon , Chromatography, High Pressure Liquid , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
18.
Pharm Dev Technol ; 25(6): 720-728, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32129125

ABSTRACT

The objective of this study was to predict the droplet size and the spraying angle during the process of binder atomization in pharmaceutical fluidized bed granulation using an empirical model. The effects of the binder viscosity, the atomization pressure, and the spray rate on the droplet size and the spraying angle were investigated using a response surface central composite design and analysis of variance. Prediction models for droplet size and spraying angle were then established using stepwise regression analysis and were validated by comparing the measured and predicted values. The results showed that the droplet size model and the spraying angle model were well established, with an R2 of 0.93 (p < 0.0001) and a root mean square error (RMSE) of 10.10, and an R2 of 0.82 (p < 0.0001) and an RMSE of 3.69, respectively. The error between the measured and predicted values of the droplet size and the spraying angle were less than 10%, indicating that the established models were accurate. The results of the present study were significant in predicting the droplet size and spraying angle in the process of pharmaceutical fluidized bed granulation.


Subject(s)
Empirical Research , Hypromellose Derivatives/chemical synthesis , Particle Size , Povidone/chemical synthesis , Technology, Pharmaceutical/methods , Forecasting , Viscosity
19.
Molecules ; 24(19)2019 Sep 23.
Article in English | MEDLINE | ID: mdl-31547523

ABSTRACT

Generally, essential oils and components of interest are extracted from plants using organic solvent, distillation, ultrasound and supercritical extraction methods. Ultrasonic extraction (UE) has the advantage of high efficiency, but its process is complicated and it has numerous variables. In this study, an L18-Hunter experimental design was applied for the first time to investigate the practicability of applying UE to Forsythia suspensa seed oil. Six potential high-risk variables, including numerical and non-numeric types, were obtained from the risk analysis and their impacts on global yield and antioxidant activity were screened. Furthermore, oils obtained by different extraction processes (i.e., UE, supercritical fluid extraction (SFE), soxhlet extraction (SE) and hydrodistillation extraction (HD)) were analyzed. A comparative study of these oils was characterized and compared by FT-IR, GC-MS and antioxidant activity. The obtained results show that the type of solvent, solvent-to-solid ratio, extraction power and time were the significant variables affecting the extraction yield, whereas antioxidant activity was only affected by the type of solvent. The regression coefficients of the yield and antioxidant activity models were 0.79 and 0.91, and the ANOVA of the models were 0.013 and <0.0001, respectively. Beta-Pinene was the main abundant component in the oils for the UE, SFE, SE and HD methods and the content was about 46%~52.4%. In conclusion, the L18-Hunter design could be used as an effective experimental design method for rapid screening of high-risk variables. Regarding extraction efficiency, chemical composition and biological activity, UE not only offered a robust Forsythia suspensa seed oil extraction process, but also provided a time- and cost-effective advantage to the food and pharmaceutical industry when compared to the SFE, SE and HD extraction processes.


Subject(s)
Antioxidants/chemistry , Forsythia/chemistry , Plant Oils/chemistry , Seeds/chemistry , Ultrasonics/methods , Chromatography, Supercritical Fluid , Gas Chromatography-Mass Spectrometry
20.
PLoS One ; 12(6): e0180209, 2017.
Article in English | MEDLINE | ID: mdl-28662115

ABSTRACT

Various modeling techniques were used to understand fluidized bed granulation using a two-step approach. First, Plackett-Burman design (PBD) was used to identify the high-risk factors. Then, Box-Behnken design (BBD) was used to analyze and optimize those high-risk factors. The relationship between the high-risk input variables (inlet air temperature X1, binder solution rate X3, and binder-to-powder ratio X5) and quality attributes (flowability Y1, temperature Y2, moisture content Y3, aggregation index Y4, and compactability Y5) of the process was investigated using response surface model (RSM), partial least squares method (PLS) and artificial neural network of multilayer perceptron (MLP). The morphological study of the granules was also investigated using a scanning electron microscope. The results showed that X1, X3, and X5 significantly affected the properties of granule. The RSM, PLS and MLP models were found to be useful statistical analysis tools for a better mechanistic understanding of granulation. The statistical analysis results showed that the RSM model had a better ability to fit the quality attributes of granules compared to the PLS and MLP models. Understanding the effect of process parameters on granule properties provides the basis for modulating the granulation parameters and optimizing the product performance at the early development stage of pharmaceutical products.


Subject(s)
Microfluidics , Models, Chemical , Technology, Pharmaceutical/methods , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...