Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.035
Filter
1.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 6): 561-566, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38845726

ABSTRACT

The title compound, C12H10N2O3, was obtained by the de-acetyl-ation reaction of 1-(6-amino-5-nitro-naphthalen-2-yl)ethanone in a concentrated sulfuric acid methanol solution. The mol-ecule comprises a naphthalene ring system bearing an acetyl group (C-3), an amino group (C-7), and a nitro group (C-8). In the crystal, the mol-ecules are assembled into a two-dimensional network by N⋯H/H⋯N and O⋯H/H⋯O hydrogen-bonding inter-actions. n-π and π-π stacking inter-actions are the dominant inter-actions in the three-dimensional crystal packing. Hirshfeld surface analysis indicates that the most important contributions are from O⋯H/H⋯O (34.9%), H⋯H (33.7%), and C⋯H/H⋯C (11.0%) contacts. The energies of the frontier mol-ecular orbitals were computed using density functional theory (DFT) calculations at the B3LYP-D3BJ/def2-TZVP level of theory and the LUMO-HOMO energy gap of the mol-ecule is 3.765 eV.

2.
Eur J Pharmacol ; 976: 176699, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38825302

ABSTRACT

Clinically, statins have long been used for the prevention and treatment of chronic renal diseases, however, the underlying mechanisms are not fully elucidated. The present study investigated the effects of atorvastatin on diabetes renal injury and ferroptosis signaling. A mouse model of diabetes was established by the intraperitoneal injection of streptozotocin (50 mg/kg/day) plus a high fat diet with or without atorvastatin treatment. Diabetes mice manifested increased plasma glucose and lipid profile, proteinuria, renal injury and fibrosis, atorvastatin significantly lowered plasma lipid profile, proteinuria, renal injury in diabetes mice. Atorvastatin reduced renal reactive oxygen species (ROS), iron accumulation and renal expression of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), transferrin receptor 1 (TFR1), and increased renal expression of glutathione peroxidase 4 (GPX4), nuclear factor erythroid 2-related factor (NRF2) and ferritin heavy chain (FTH) in diabetes mice. Consistent with the findings in vivo, atorvastatin prevented high glucose-induced ROS formation and Fe2+ accumulation, an increase in the expression of 4-HNE, MDA and TFR1, and a decrease in cell viability and the expression of NRF2, GPX4 and FTH in HK2 cells. Atorvastatin also reversed ferroptosis inducer erastin-induced ROS production, intracellular Fe2+ accumulation and the changes in the expression of above-mentioned ferroptosis signaling molecules in HK2 cells. In addition, atorvastatin alleviated high glucose- or erastin-induced mitochondria injury. Ferroptosis inhibitor ferrostatin-1 and antioxidant N-acetylcysteine (NAC) equally reversed the expression of high glucose-induced ferroptosis signaling molecules. Our data support the notion that statins can inhibit diabetes-induced renal oxidative stress and ferroptosis, which may contribute to statins protection of diabetic nephropathy.


Subject(s)
Atorvastatin , Diabetic Nephropathies , Ferroptosis , Oxidative Stress , Reactive Oxygen Species , Signal Transduction , Ferroptosis/drug effects , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/prevention & control , Oxidative Stress/drug effects , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Male , Signal Transduction/drug effects , Mice , Reactive Oxygen Species/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Mice, Inbred C57BL , Humans , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Cell Line , Phenylenediamines/pharmacology , Phenylenediamines/therapeutic use
3.
Mol Genet Genomics ; 299(1): 62, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869622

ABSTRACT

Sodium taurocholate co-transporting polypeptide (NTCP), a bile acid transporter, plays a crucial role in regulating bile acid levels and influencing the risk of HBV infection. Genetic variations in the SLC10A1 gene, which encodes NTCP, affect these functions. However, the impact of SLC10A1 gene variants on the metabolic and biochemical traits remained unclear. We aimed to investigate the association of SLC10A1 gene variants with the clinical and biochemical parameters, and the risk of different HBV infection statuses and gallstone disease in the Taiwanese population. Genotyping data from 117,679 Taiwan Biobank participants were analyzed using the Axiom genome-wide CHB arrays. Regional-plot association analysis demonstrated genome-wide significant association between the SLC10A1 rs2296651 genotypes and lipid profile, gamma glutamyl transferase (γGT) level and anti-HBc-positivity. Genotype-phenotype association analyses revealed significantly lower total cholesterol, low-density lipoprotein (LDL) cholesterol and uric acid levels, a higher γGT level and a higher gallstone incidence in rare rs2296651-A allele carrier. Participants with the rs2296651 AA-genotype exhibited significantly lower rates of anti-HBc-positivity and HBsAg-positivity. Compared to those with the GG-genotype, individuals with non-GG-genotypes had reduced risks for various HBV infection statuses: the AA-genotype showed substantially lower risks, while the GA-genotype demonstrated modestly lower risks. Predictive tools also suggested that the rs2296651 variant potentially induced protein damage and pathogenic effects. In conclusion, our data revealed pleiotropic effects of the SLC10A1 rs2296651 genotypes on the levels of biochemical traits and the risk of HBV infection and gallstone disease. This confirms SLC10A1's versatility and implicates its genotypes in predicting both biochemical traits and disease susceptibility.


Subject(s)
Gallstones , Genetic Predisposition to Disease , Hepatitis B virus , Hepatitis B , Organic Anion Transporters, Sodium-Dependent , Polymorphism, Single Nucleotide , Symporters , Humans , Organic Anion Transporters, Sodium-Dependent/genetics , Gallstones/genetics , Female , Symporters/genetics , Male , Hepatitis B/genetics , Hepatitis B/virology , Hepatitis B virus/pathogenicity , Middle Aged , Taiwan/epidemiology , Adult , Genotype , Genome-Wide Association Study , Genetic Association Studies , Risk Factors
4.
J Org Chem ; 89(11): 8041-8054, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38757188

ABSTRACT

A base-assisted dearomative [2 + 1] spiroannulation of p/o-bromophenols with activated olefins (methylenemalonates) to construct various cyclopropyl spirocyclohexadienone skeletons is reported. Furthermore, several other halophenols (X = Cl, I) were also tolerated in this process. Control experiments reveal a dearomative Michael addition of phenols at their halogenated positions to methylenemalonates, followed by intramolecular radical-based SRN1 dehalogenative cyclopropanation. However, according to the density functional theory (DFT) calculations, an SN2 dehalogenative cyclopropanation with the same low activation energy barrier should not be excluded. The utility of this method is showcased by gram-scale syntheses and transformations of the dearomatized products.

5.
Angew Chem Int Ed Engl ; : e202400477, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712648

ABSTRACT

Polyethylene oxide (PEO)-based solid-state batteries hold great promise as the next-generation batteries with high energy density and high safety. However, PEO-based electrolytes encounter certain limitations, including inferior ionic conductivity, low Li+ transference number, and poor mechanical strength. Herein, we aim to simultaneously address these issues by utilizing one-dimensional zwitterionic cellulose nanofiber (ZCNF) as fillers for PEO-based electrolytes using a simple aqueous solution casting method. Multiple characterizations and theoretical calculations demonstrate that the unique zwitterionic structure imparts ZCNF with various functions, such as disrupting PEO crystallization, dissociating lithium salts, anchoring anions through cationic groups, accelerating Li+ migration by anionic groups, as well as its inherent reinforcement effect. As a result, the prepared PL-ZCNF electrolyte exhibits remarkable ionic conductivity (5.37×10-4 S cm-1) and Li+ transference number (0.62) at 60 °C without sacrificing mechanical strength (9.2 MPa), together with high critical current density of 1.1 mA cm-2. Attributed to these merits of PL-ZCNF, the LiFePO4|PL-ZCNF|Li solid-state full-cell delivers exceptional rate capability and cycling performance (900 cycles at 5 C). Notably, the assembled pouch-cell can maintain steady operation over 1000 cycles with an impressive 93.7 % capacity retention at 0.5 C and 60 °C, highlighting the great potential of PL-ZCNF for practical applications.

6.
Nat Chem ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719944

ABSTRACT

Chiral sulfur pharmacophores are crucial for drug discovery in bioscience and medicinal chemistry. While the catalytic asymmetric synthesis of sulfoxides and sulfinate esters with stereogenic-at-sulfur(IV) centres is well developed, the synthesis of chiral sulfinamides remains challenging, which has primarily been attributed to the high nucleophilicity and competing reactions of amines. In this study, we have developed an efficient methodology for the catalytic asymmetric synthesis of chiral sulfinamides and sulfinate esters by the sulfinylation of diverse nucleophiles, including aromatic amines and alcohols, using our bifunctional chiral 4-arylpyridine N-oxides as catalysts. The remarkable results are a testament to the efficiency, versatility and broad applicability of the developed synthetic approach, serving as a valuable tool for the synthesis of sulfur pharmacophores. Mechanistic experiments and density functional theory calculations revealed that the initiation and stereocontrol of this reaction are induced by an acyl transfer catalyst. Our research provides an efficient approach for the construction of optically pure sulfur(IV) centres.

7.
EClinicalMedicine ; 72: 102622, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745965

ABSTRACT

Background: The role of transarterial chemoembolization (TACE) in the treatment of advanced hepatocellular carcinoma (HCC) is unconfirmed. This study aimed to assess the efficacy and safety of immune checkpoint inhibitors (ICIs) plus anti-vascular endothelial growth factor (anti-VEGF) antibody/tyrosine kinase inhibitors (TKIs) with or without TACE as first-line treatment for advanced HCC. Methods: This nationwide, multicenter, retrospective cohort study included advanced HCC patients receiving either TACE with ICIs plus anti-VEGF antibody/TKIs (TACE-ICI-VEGF) or only ICIs plus anti-VEGF antibody/TKIs (ICI-VEGF) from January 2018 to December 2022. The study design followed the target trial emulation framework with stabilized inverse probability of treatment weighting (sIPTW) to minimize biases. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), objective response rate (ORR), and safety. The study is registered with ClinicalTrials.gov, NCT05332821. Findings: Among 1244 patients included in the analysis, 802 (64.5%) patients received TACE-ICI-VEGF treatment, and 442 (35.5%) patients received ICI-VEGF treatment. The median follow-up time was 21.1 months and 20.6 months, respectively. Post-application of sIPTW, baseline characteristics were well-balanced between the two groups. TACE-ICI-VEGF group exhibited a significantly improved median OS (22.6 months [95% CI: 21.2-23.9] vs 15.9 months [14.9-17.8]; P < 0.0001; adjusted hazard ratio [aHR] 0.63 [95% CI: 0.53-0.75]). Median PFS was also longer in TACE-ICI-VEGF group (9.9 months [9.1-10.6] vs 7.4 months [6.7-8.5]; P < 0.0001; aHR 0.74 [0.65-0.85]) per Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1. A higher ORR was observed in TACE-ICI-VEGF group, by either RECIST v1.1 or modified RECIST (41.2% vs 22.9%, P < 0.0001; 47.3% vs 29.7%, P < 0.0001). Grade ≥3 adverse events occurred in 178 patients (22.2%) in TACE-ICI-VEGF group and 80 patients (18.1%) in ICI-VEGF group. Interpretation: This multicenter study supports the use of TACE combined with ICIs and anti-VEGF antibody/TKIs as first-line treatment for advanced HCC, demonstrating an acceptable safety profile. Funding: National Natural Science Foundation of China, National Key Research and Development Program of China, Jiangsu Provincial Medical Innovation Center, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Nanjing Life Health Science and Technology Project.

8.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38780388

ABSTRACT

Atom-interferometer gyroscopes have attracted much attention for their long-term stability and extremely low drift. For such high-precision instruments, self-calibration to achieve an absolute rotation measurement is critical. In this work, we propose and demonstrate the self-calibration of an atom-interferometer gyroscope. This calibration is realized by using the detuning of the laser frequency to control the atomic velocity, thus modulating the scale factor of the gyroscope. The modulation determines the order and the initial phase of the interference stripe, thus eliminating the ambiguity caused by the periodicity of the interferometric signal. This self-calibration method is validated through a measurement of the Earth's rotation rate, and a relative uncertainty of 162 ppm is achieved. Long-term stable and self-calibrated atom-interferometer gyroscopes have important applications in the fields of fundamental physics, geophysics, and long-time navigation.

9.
World J Gastrointest Surg ; 16(5): 1385-1394, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38817293

ABSTRACT

BACKGROUND: Previous studies have validated the efficacy of both magnetic compression and surgical techniques in creating rabbit tracheoesophageal fistula (TEF) models. Magnetic compression achieves a 100% success rate but requires more time, while surgery, though less frequently successful, offers rapid model establishment and technical maturity in larger animal models. AIM: To determine the optimal approach for rabbit disease modeling and refine the process. METHODS: TEF models were created in 12 rabbits using both the modified magnetic compression technique and surgery. Comparisons of the time to model establishment, success rate, food and water intake, weight changes, activity levels, bronchoscopy findings, white blood cell counts, and biopsies were performed. In response to the failures encountered during modified magnetic compression modeling, we increased the sample size to 15 rabbit models and assessed the repeatability and stability of the models, comparing them with the original magnetic compression technique. RESULTS: The modified magnetic compression technique achieved a 66.7% success rate, whereas the success rate of the surgery technique was 33.3%. Surviving surgical rabbits might not meet subsequent experimental requirements due to TEF-related inflammation. In the modified magnetic compression group, one rabbit died, possibly due to magnet corrosion, and another died from tracheal magnet obstruction. Similar events occurred during the second round of modified magnetic compression modeling, with one rabbit possibly succumbing to aggravated lung infection. The operation time of the first round of modified magnetic compression was 3.2 ± 0.6 min, which was significantly reduced to 2.1 ± 0.4 min in the second round, compared to both the first round and that of the original technique. CONCLUSION: The modified magnetic compression technique exhibits lower stress responses, a simple procedure, a high success rate, and lower modeling costs, making it a more appropriate choice for constructing TEF models in rabbits.

10.
Vet Res ; 55(1): 68, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807225

ABSTRACT

Pseudorabies virus (PRV) is recognized as the aetiological agent responsible for Aujeszky's disease, or pseudorabies, in swine populations. Rab6, a member of the small GTPase family, is implicated in various membrane trafficking processes, particularly exocytosis regulation. Its involvement in PRV infection, however, has not been documented previously. In our study, we observed a significant increase in the Rab6 mRNA and protein levels in both PK-15 porcine kidney epithelial cells and porcine alveolar macrophages, as well as in the lungs and spleens of mice infected with PRV. The overexpression of wild-type Rab6 and its GTP-bound mutant facilitated PRV proliferation, whereas the GDP-bound mutant form of Rab6 had no effect on viral propagation. These findings indicated that the GTPase activity of Rab6 was crucial for the successful spread of PRV. Further investigations revealed that the reduction in Rab6 levels through knockdown significantly hampered PRV proliferation and disrupted virus assembly and egress. At the molecular level, Rab6 was found to interact with the PRV glycoproteins gB and gE, both of which are essential for viral assembly and egress. Our results collectively suggest that PRV exploits Rab6 to expedite its assembly and egress and identify Rab6 as a promising novel target for therapeutic treatment for PRV infection.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Virus Release , rab GTP-Binding Proteins , Animals , Herpesvirus 1, Suid/physiology , Herpesvirus 1, Suid/genetics , Swine , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Mice , Pseudorabies/virology , Virus Assembly/physiology , Swine Diseases/virology , Cell Line
11.
MedComm (2020) ; 5(6): e547, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38764726

ABSTRACT

Cancer is a disease with molecular heterogeneity that is closely related to gene mutations and epigenetic changes. The principal histological subtype of lung cancer is non-small cell lung cancer (NSCLC). Long noncoding RNA (lncRNA) is a kind of RNA that is without protein coding function, playing a critical role in the progression of cancer. In this research, the regulatory mechanisms of lncRNA phosphorylase kinase regulatory subunit alpha 1 antisense RNA 1 (PHKA1-AS1) in the progression of NSCLC were explored. The increased level of N6-methyladenosine (m6A) modification in NSCLC caused the high expression of PHKA1-AS1. Subsequently, high-expressed PHKA1-AS1 significantly facilitated the proliferation and metastasis of NSCLC cells, and these effects could be reversed upon the inhibition of PHKA1-AS1 expression, both in vivo and in vitro. Additionally, the target protein of PHKA1-AS1 was actinin alpha 4 (ACTN4), which is known as an oncogene. Herein, PHKA1-AS1 could enhance the protein stability of ACTN4 by inhibiting its ubiquitination degradation process, thus exerting the function of ACTN4 in promoting the progress of NSCLC. In conclusion, this research provided a theoretical basis for further exploring the potential mechanism of NSCLC metastasis and searching novel biomarkers related to the pathogenesis and progression of NSCLC.

12.
Front Plant Sci ; 15: 1403060, 2024.
Article in English | MEDLINE | ID: mdl-38779066

ABSTRACT

Paclitaxel (trade name Taxol) is a rare diterpenoid with anticancer activity isolated from Taxus. At present, paclitaxel is mainly produced by the semi-synthetic method using extract of Taxus tissues as raw materials. The studies of regulatory mechanisms in paclitaxel biosynthesis would promote the production of paclitaxel through tissue/cell culture approaches. Here, we systematically identified 990 transcription factors (TFs), 460 microRNAs (miRNAs), and 160 phased small interfering RNAs (phasiRNAs) in Taxus chinensis to explore their interactions and potential roles in regulation of paclitaxel synthesis. The expression levels of enzyme genes in cone and root were higher than those in leaf and bark. Nearly all enzyme genes in the paclitaxel synthesis pathway were significantly up-regulated after jasmonate treatment, except for GGPPS and CoA Ligase. The expression level of enzyme genes located in the latter steps of the synthesis pathway was significantly higher in female barks than in male. Regulatory TFs were inferred through co-expression network analysis, resulting in the identification of TFs from diverse families including MYB and AP2. Genes with ADP binding and copper ion binding functions were overrepresented in targets of miRNA genes. The miRNA targets were mainly enriched with genes in plant hormone signal transduction, mRNA surveillance pathway, cell cycle and DNA replication. Genes in oxidoreductase activity, protein-disulfide reductase activity were enriched in targets of phasiRNAs. Regulatory networks were further constructed including components of enzyme genes, TFs, miRNAs, and phasiRNAs. The hierarchical regulation of paclitaxel production by miRNAs and phasiRNAs indicates a robust regulation at post-transcriptional level. Our study on transcriptional and posttranscriptional regulation of paclitaxel synthesis provides clues for enhancing paclitaxel production using synthetic biology technology.

13.
Adv Mater ; : e2401965, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38631703

ABSTRACT

Tailorable lithium (Li) nucleation and uniform early-stage plating is essential for long-lifespan Li metal batteries. Among factors influencing the early plating of Li anode, the substrate is critical, but a fine control of the substrate structure on a scale of ≈10 nm has been rarely achieved. Herein, a carbon consisting of ordered grids is prepared, as a model to investigate the effect of substrate structure on the Li nucleation. In contrast to the individual spherical Li nuclei formed on the flat graphene, an ultrauniform and nuclei-free Li plating is obtained on the ordered carbon with a grid size smaller than the thermodynamical critical radius of Li nucleation (≈26 nm). Simultaneously, an inorganic-rich solid-electrolyte-interphase is promoted by the cross-sectional carbon layers of such ordered grids which are exposed to the electrolyte. Consequently, the carbon grids with a grid size of ≈10 nm show a favorable cycling stability for more than 1100 cycles measured at 2 mA cm-2 in a half cell. With LiNi0.8Co0.1Mn0.1O2 as cathode, the assembled full cell with a cathode capacity of 3 mAh cm-2 and a negative/positive ratio of 1.67 demonstrates a stable cycling for over 130 cycles with a capacity retention of 88%.

14.
Virol Sin ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38636706

ABSTRACT

The pseudorabies virus (PRV) is identified as a double-helical DNA virus responsible for causing Aujeszky's disease, which results in considerable economic impacts globally. The enzyme tryptophanyl-tRNA synthetase 2 (WARS2), a mitochondrial protein involved in protein synthesis, is recognized for its broad expression and vital role in the translation process. The findings of our study showed an increase in both mRNA and protein levels of WARS2 following PRV infection in both cell cultures and animal models. Suppressing WARS2 expression via RNA interference in PK-15 â€‹cells led to a reduction in PRV infection rates, whereas enhancing WARS2 expression resulted in increased infection rates. Furthermore, the activation of WARS2 in response to PRV was found to be reliant on the cGAS/STING/TBK1/IRF3 signaling pathway and the interferon-alpha receptor-1, highlighting its regulation via the type I interferon signaling pathway. Further analysis revealed that reducing WARS2 levels hindered PRV's ability to promote protein and lipid synthesis. Our research provides novel evidence that WARS2 facilitates PRV infection through its management of protein and lipid levels, presenting new avenues for developing preventative and therapeutic measures against PRV infections.

15.
Chem Commun (Camb) ; 60(38): 5018-5021, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38639063

ABSTRACT

Thioglycoside bond formation via an asymmetric sulfa-Michael/aldol reaction of (E)-ß-nucleobase acrylketones and 1,4-dithiane-2,5-diol has been achieved with a cinchona alkaloid-derived bifunctional squaramide chiral catalyst. Diverse purine, benzimidazole, and imidazole substrates are well tolerated and generate 4'-thionucleoside derivatives containing three contiguous stereogenic centers with excellent results (30 examples, up to 97% yield, >20 : 1 dr and up to 99% ee). Moreover, the novel strategy provides an efficient and convenient synthetic route to construct chiral 4'-thionucleosides.

16.
PLoS Pathog ; 20(4): e1012123, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38607975

ABSTRACT

RAB GTPases (RABs) control intracellular membrane trafficking with high precision. In the present study, we carried out a short hairpin RNA (shRNA) screen focused on a library of 62 RABs during infection with porcine reproductive and respiratory syndrome virus 2 (PRRSV-2), a member of the family Arteriviridae. We found that 13 RABs negatively affect the yield of PRRSV-2 progeny virus, whereas 29 RABs have a positive impact on the yield of PRRSV-2 progeny virus. Further analysis revealed that PRRSV-2 infection transcriptionally regulated RAB18 through RIG-I/MAVS-mediated canonical NF-κB activation. Disrupting RAB18 expression led to the accumulation of lipid droplets (LDs), impaired LDs catabolism, and flawed viral replication and assembly. We also discovered that PRRSV-2 co-opts chaperone-mediated autophagy (CMA) for lipolysis via RAB18, as indicated by the enhanced associations between RAB18 and perlipin 2 (PLIN2), CMA-specific lysosomal associated membrane protein 2A (LAMP2A), and heat shock protein family A (Hsp70) member 8 (HSPA8/HSC70) during PRRSV-2 infection. Knockdown of HSPA8 and LAMP2A impacted on the yield of PRRSV-2 progeny virus, implying that the virus utilizes RAB18 to promote CMA-mediated lipolysis. Importantly, we determined that the C-terminal domain (CTD) of HSPA8 could bind to the switch II domain of RAB18, and the CTD of PLIN2 was capable of associating with HSPA8, suggesting that HSPA8 facilitates the interaction between RAB18 and PLIN2 in the CMA process. In summary, our findings elucidate how PRRSV-2 hijacks CMA-mediated lipid metabolism through innate immune activation to enhance the yield of progeny virus, offering novel insights for the development of anti-PRRSV-2 treatments.


Subject(s)
Chaperone-Mediated Autophagy , Porcine respiratory and reproductive syndrome virus , Swine , Animals , Lipolysis , Up-Regulation , rab GTP-Binding Proteins/genetics , Lysosomal Membrane Proteins , RNA, Small Interfering
17.
Dalton Trans ; 53(15): 6547-6555, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38517702

ABSTRACT

Metalloviologens, as emerging electron-transfer photochromic compounds, have shown intriguing properties such as radiochromism, photochromism and photoconductance. However, only a limited number of them have been reported so far. Exploration of new metalloviologens is strongly desired. Herein, we report a new solvothermally synthesized metalloviologen complex [CdCl2(ND)2]n (1, ND = 1,5-naphthalenes) that exhibits photochromic and intrinsic white light emission properties. Density functional theory calculation results reveal that the photochromism could be assigned to photoinduced electron transfer from chlorine atoms to ND molecules. The photoinduced charge-separated states are heat/air stable, attributed to the delocalization of ND and strong intermolecular π-π interactions. Besides, complex 1 consistently emits intrinsic white light when excited with 340-370 nm UV light, achieving high color rendering index (CRI) values (82.54-94.04). By adjusting the excitation wavelength, both "warm" and "cold" white light emission can be produced, making it suitable for the application of a white light emitting diode (WLED). Thus, this work demonstrates that the ND-based metalloviologen is not only helpful in producing photochromism, but also beneficial for creating white-light emission.

18.
Huan Jing Ke Xue ; 45(3): 1361-1370, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471852

ABSTRACT

Atmospheric PM2.5 samples were collected in Heze, Shandong Province, from a total of three sampling sites at Heze College, Huarun Pharmacy, and a wastewater treatment plant between October 15, 2017 and January 31, 2018, to determine the concentrations of 21 metal elements in PM2.5 using inductively coupled plasma mass spectrometry (ICP-MS). The degree of elemental enrichment was also discussed, the health risks and potential heavy metal ecological risks were assessed. The results showed that ρ (PM2.5) ranged from 26.7 to 284.1 µg·m-3 at the three sampling sites during the sampling period, and the concentration values did not differ significantly, all of which were at high pollution levels. The highest concentrations of K were found in the three sampling sites, accounting for 31.03%, 39.47%, and 38.43% of the total, respectively, mainly due to the high contribution of biomass burning in autumn and winter in Heze, a large agricultural city. The highest concentrations of Zn, 89.70, 84.21, and 67.68 ng·m-3, were found in the trace elements at the three sampling sites, respectively. The enrichment factor results showed that the enrichment factor values of Zn, Pb, Sn, Sb, Cd, and Se were higher than 100, among which the enrichment factors of Cd and Se were higher than 2 000 and 4 000, respectively, which were significantly influenced by anthropogenic activities and might have been related to industrial production, metal smelting, road sources, and coal combustion emissions. The health risk results showed that there was some potential non-carcinogenic risk (HQ>0.1 for children and adults) for As and a combined potential non-carcinogenic risk (HI>0.1) and some potential carcinogenic risk (CRT>1×10-6) for both children and adults at the three sampling sites. There was a more significant carcinogenic risk (CRT>1×10-4) for adults at the wastewater treatment plant, and the slightly higher carcinogenic risk for adults than that for children may have been related to the longer outdoor activity and higher PM2.5 exposure for adults. The elements with the highest potential ecological risk values were Cd, As, and Pb, with Cd exhibiting a very high potential ecological risk that should be taken seriously. All three sampling sites showed a very high combined potential ecological risk, with the intensity spatially expressed as Heze College>Huarun Pharmacy>wastewater treatment plant.


Subject(s)
Cadmium , Metals, Heavy , Child , Adult , Humans , Cadmium/analysis , Lead/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Carcinogens/analysis , Risk Assessment , Particulate Matter/analysis , China , Dust/analysis
19.
JCI Insight ; 9(4)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38385749

ABSTRACT

RNA-binding proteins (RBPs) interact with RNA and ubiquitously regulate RNA transcripts during their life cycle, playing a fundamental role in the progression of angiogenesis-related diseases. In the skeletal system, endothelium-dependent angiogenesis is indispensable for bone formation. However, the role of RBPs in endothelium-dependent bone formation is unclear. Here, we show that RBP-Y-box-binding protein 1 (YBX1) was strongly reduced in the bone vasculature of ovariectomy (OVX) mice. Endothelial cell-specific deletion of Ybx1 impaired CD31-high, endomucin-high (CD31hiEMCNhi) endothelium morphology and resulted in low bone mass whereas Ybx1 overexpression promoted angiogenesis-dependent osteogenesis and ameliorated bone loss. Mechanistically, YBX1 deletion disrupted CD31, EMCN, and bone morphogenetic protein 4 (BMP4) stability in an m5C-dependent manner and blocked endothelium-derived BMP4 release, thereby inhibiting osteogenic differentiation of bone mesenchymal stromal cells. Administration of recombinant BMP4 protein restored impaired bone formation in Ybx1 deletion mice. Tail vein injection of CD31-modified polyethylene glycol-poly (lactic-co-glycolic acid) carrying sciadopitysin, a natural YBX1 agonist, pharmacologically partially reversed CD31hiEMCNhi vessels' decline and improved bone mass in both OVX and aging animals. These findings demonstrated the role of RBP-YBX1 in angiogenesis-dependent bone formation and provided a therapeutic approach for ameliorating osteoporosis.


Subject(s)
Osteogenesis , Osteoporosis , Transcription Factors , Animals , Female , Mice , Bone and Bones/metabolism , Endothelium/metabolism , Osteogenesis/physiology , Osteoporosis/genetics , RNA , Transcription Factors/genetics
20.
Cancer Manag Res ; 16: 95-111, 2024.
Article in English | MEDLINE | ID: mdl-38370535

ABSTRACT

Background: Several studies suggest that Proteasome 26S Subunit, ATPase (PSMC) family genes are of great importance in tumor progression and spreading, but the study for systematic evaluation of the function of PSMC genes in hepatocellular carcinoma (HCC) is currently lacking. Methods: The functions of PSMC genes in HCC were analyzed using multiple online databases, including the TCGA database, GEO database, HPA database, cBioPortal database, DAVID, and KEGG pathway. Experiments were later conducted to verify PSMC expression. Results: High levels of PSMC gene expression were detected in HCC tissues and PSMCs exhibited potentially powerful abilities in diagnosing HCC patients. All PSMC proteins are expressed to varying degrees in HCC tissues and high expression of the PSMC genes lead to poor prognosis in patients with HCC. Moreover, DNA methylation involves the regulation of the expression of PSMC2 and PSMC5 in HCC, and the levels of methylation of PSMC2 or PSMC5 correlate positively with patient overall survival in HCC patients. The copy number alteration and mutation of PSMC genes were observed and related to the expression of PSMCs in HCC. Functional enrichment analysis showed that many highly co-expressed genes of PSMCs had a potential role in tumor progression and metastasis, which merited further in-depth study. Functional network analysis also suggests that the primary biological function of PSMC genes is the regulation of protein homeostasis and energy metabolism in HCC. Moreover, the expression levels of PSMCs are related to immune cell infiltrates and immunomodulatory factors in HCC. Conclusion: Our study indicates that PSMC genes are the potential target for precision immunotherapy and novel prognostic biomarkers for HCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...