Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Rev ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842266

ABSTRACT

This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.

2.
Nanoscale ; 15(19): 8814-8824, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37114328

ABSTRACT

Branched Pt nanoparticles represent an exciting class of nanomaterials with high surface areas suitable for applications in electrocatalysis. Introducing a second metal can enhance performance and reduce cost. External factors such as capping agents and temperature have been used to offer insights into nanopod formation and to encourage their kinetic evolution. More recently, nanodendrites have been reported, though synthesis has generally been empirical; making controlled variation of morphology while maintaining bimetallic composition an elusive target. We report the combination of Pt with Fe under a range of conditions, yielding individually bimetallic nanoparticles whose construction sheds new light on nanopod and/or nanodendrite formation. Fine control of metal precursor reduction through modulating capping agents, reagents, and temperature initially directs nanopod synthesis. Morphology control is retained while composition is then varied from Pt-rich to Pt-poor. Additionally, conditions are identified that promote the collision-based branching of nanopod arms. This allows synthesis to be redirected for the selective growth of compositionally controlled nanodendrites in predictable fashion.

3.
Langmuir ; 33(34): 8455-8462, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28771362

ABSTRACT

A viable solution toward "green" optoelectronics is rooted in our ability to fabricate optoelectronics on transparent nanofibrillated cellulose (NFC) film substrates. However, the flammability of transparent NFC film poses a severe fire hazard in optoelectronic devices. Despite many efforts toward enhancing the fire-retardant features of transparent NFC film, making NFC film fire-retardant while maintaining its high transparency (≥90%) remains an ambitious objective. Herein, we combine NFC with NFC-dispersed monolayer clay nanoplatelets as a fire retardant to prepare highly transparent NFC-monolayer clay nanoplatelet hybrid films with a superb self-extinguishing behavior. Homogeneous and stable monolayer clay nanoplatelet dispersion was initially obtained by using NFC as a green dispersing agent with the assistance of ultrasonication and then used to blend with NFC to prepare highly transparent and self-extinguishing hybrid films by a water evaporation-induced self-assembly process. As the content of monolayer clay nanoplatelets increased from 5 wt % to 50 wt %, the obtained hybrid films presented enhanced self-extinguishing behavior (limiting oxygen index sharply increased from 21% to 96.5%) while retaining a ∼90% transparency at 600 nm. More significantly, the underlying mechanisms for the high transparency and excellent self-extinguishing behavior of these hybrid films with a clay nanoplatelet content of over 30 wt % were unveiled by a series of characterizations such as SEM, XRD, TGA, and limiting oxygen index tester. This work offers an alternative environmentally friendly, self-extinguishing, and highly transparent substrate to next-generation optoelectronics, and is aimed at providing a viable solution to environmental concerns that are caused by ever-increasing electronic waste.

4.
ACS Appl Mater Interfaces ; 9(6): 5495-5502, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28106368

ABSTRACT

Water-responsive shape-memory polymers (SMPs) are desirable for biomedical applications, but their limited shape recovery process is problematic. Herein, we demonstrate a shape-memory poly(vinyl alcohol) (SM-PVA) with programmable multistep shape recovery processes in water via a wettability contrast strategy. A hexamethyldisilazane (HMDS)-treated SiO2 nanoparticle layer with varying loading weights was rationally deposited onto the surface of SM-PVA, aiming to create surface-wettability contrast. The varying wettability led to different water adsorption behaviors of SM-PVA that could be well-described by the pseudo-first-order kinetic model. The results calculated from the kinetic model showed that both the pseudo-first order-adsorption rate constant and the saturated water absorption of SM-PVA demonstrated a declining trend as the loading weight of SiO2 increased, which laid the foundation for the local regulation of the water-responsive rate of SM-PVA. Finally, two proof-of-concept drug-delivery devices with diverse three-dimensional structures and actuations are presented based on the water-responsive SM-PVA with preprogrammed multistep shape recovery processes. We believe the programmable shape-memory behavior of water-responsive SM-PVA could highly extend its use in drug delivery, tissue engineering scaffolds, and smart implantable devices, etc.

SELECTION OF CITATIONS
SEARCH DETAIL
...