Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 308
Filter
1.
Huan Jing Ke Xue ; 45(6): 3270-3283, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897750

ABSTRACT

This study aimed to investigate the impact of spatiotemporal changes in land use on ecosystem carbon storage. The study analyzed the spatiotemporal changes in carbon storage in the study area based on land use data from five periods (1985, 1995, 2005, 2015, and 2020) using the InVEST model. The PLUS model was used to predict land use changes in the study area under four different scenarios (natural development, farmland protection, ecological protection, and double protection of farmland and ecology) in 2035, and the ecosystem carbon storage under different scenarios was estimated. The results of the study indicated that the farmland in the area under investigation had been decreasing consistently from 1985 to 2020, with a more rapid rate of change observed between 2015 and 2020. During this period, the overall dynamic attitude towards land use reached 34.62 %. Additionally, the carbon storage in the area showed a decreasing trend over the years, with a decrease of 1.55×105 t from 1985 to 2020. Between 2005 and 2015, the carbon storage showed a decrease of 1.22×105 t, with an average annual decrease of 1.22×104 t. The areas with higher carbon storage were located in the eastern part of the study area, whereas areas with lower carbon storage were found in the central and northwestern parts. Although the proportion of carbon storage in farmland decreased from 66.89 % to 57.73 %, farmland remained the most important carbon pool in the study area. The conversion of other land use types to grassland and forestland was advantageous for increasing ecosystem carbon storage. Finally, the study projected that by 2035, the carbon storage in the natural development scenario, the farmland protection scenario, the ecological protection scenario, and the dual protection scenario would be 81.77×105, 82.45×105, 82.82×105, and 82.51×105 t, respectively.

2.
Photodiagnosis Photodyn Ther ; 48: 104231, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821238

ABSTRACT

BACKGROUND: Chordoma is a rare congenital low-grade malignant tumor characterized by infiltrative growth. It often tends to compress important intracranial nerves and blood vessels, making its surgical treatment extremely difficult. Besides, the efficacy of radiotherapy and chemotherapy is limited. The photosensitizer hematoporphyrin derivative (HPD) can emit red fluorescence under 405 nm excitation and produce reactive oxygen species for tumor therapy under 630 nm excitation. Herein, we investigated the effects of the photosensitizer hematoporphyrin derivative (HPD) on different cell lines of chordoma and xenograft tumors under 405 nm and 630 nm excitation. METHODS: The photosensitizer hematoporphyrin derivative (HPD) and Two different chordoma cell lines (U-CH1, JHC7) were used for the test. The in vitro experiments were as follows: (1) the fluorescence intensity emitted by chordoma cells excited by different 405 nm light intensities was observed under a confocal microscope; (2) the Cell Counting Kit-8 (CCK-8) assay was performed to detect the effects of different photosensitizer concentrations and 630 nm light energy densities on the activity of chordoma cells. In the in vivo experiments, (3) Fluorescence visualization of chordoma xenograft tumors injected with photosensitizer via tail vein under 405 nm excitation; (4) Impact of 630 nm excitation of photosensitizer on the growth of chordoma xenograft tumors. RESULTS: (1) The photosensitizers in chordoma cells and chordoma xenografts of nude mice were excited by 405 nm to emit red fluorescence; (2) 630 nm excitation photosensitizer reduces chordoma cell activity and inhibits chordoma xenograft tumor growth in chordoma nude mice. CONCLUSION: Photodynamic techniques mediated by the photosensitizer hematoporphyrin derivatives can be used for the diagnosis and treatment of chordoma.

3.
Cell Death Differ ; 31(5): 558-573, 2024 May.
Article in English | MEDLINE | ID: mdl-38570607

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a deadly malignancy with notable metabolic reprogramming, yet the pivotal metabolic feature driving ESCC progression remains elusive. Here, we show that methionine cycle exhibits robust activation in ESCC and is reversely associated with patient survival. ESCC cells readily harness exogenous methionine to generate S-adenosyl-methionine (SAM), thus promoting cell proliferation. Mechanistically, methionine augments METTL3-mediated RNA m6A methylation through SAM and revises gene expression. Integrative omics analysis highlights the potent influence of methionine/SAM on NR4A2 expression in a tumor-specific manner, mediated by the IGF2BP2-dependent stabilization of methylated NR4A2 mRNA. We demonstrate that NR4A2 facilitates ESCC growth and negatively impacts patient survival. We further identify celecoxib as an effective inhibitor of NR4A2, offering promise as a new anti-ESCC agent. In summary, our findings underscore the active methionine cycle as a critical metabolic characteristic in ESCC, and pinpoint NR4A2 as a novel methionine-responsive oncogene, thereby presenting a compelling target potentially superior to methionine restriction.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Methionine , Nuclear Receptor Subfamily 4, Group A, Member 2 , Humans , Methionine/metabolism , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Cell Line, Tumor , Animals , Oncogenes , Mice , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic , Mice, Nude
4.
Materials (Basel) ; 17(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38612209

ABSTRACT

Typically, in the manufacturing of GH4169 superalloy forgings, the multi-process hot forming that consists of pre-deformation, heat treatment and final deformation is required. This study focuses on the microstructural evolution throughout hot working processes. Considering that δ phase can promote nucleation and limit the growth of grains, a process route was designed, including pre-deformation, aging treatment (AT) to precipitate sufficient δ phases, high temperature holding (HTH) to uniformly heat the forging, and final deformation. The results show that the uneven strain distribution after pre-deformation has a significant impact on the subsequent refinement of the grain microstructure due to the complex coupling relationship between the evolution of the δ phase and recrystallization behavior. After the final deformation, the fine-grain microstructure with short rod-like δ phases as boundaries is easy to form in the region with a large strain of the pre-forging. However, necklace-like mixed grain microstructure is formed in the region with a small strain of the pre-forging. In addition, when the microstructure before final deformation consists of mixed grains, dynamic recrystallization (DRX) nucleation behavior preferentially depends on kernel average misorientation (KAM) values. A large KAM can promote the formation of DRX nuclei. When the KAM values are close, a smaller average grain size of mixed-grain microstructure is more conductive to promote the DRX nucleation. Finally, the interaction mechanisms between δ phase and DRX nucleation are revealed.

5.
J Mech Behav Biomed Mater ; 153: 106474, 2024 May.
Article in English | MEDLINE | ID: mdl-38447273

ABSTRACT

Total Hip Arthroplasty has been a revolutionary technique in restoring mobility to patients with damaged hip joints. The introduction of modular components of the hip prosthesis allowed for bespoke solutions based on the requirements of the patient. The femoral stem is designed with a conical trunnion to allow for assembly of different femoral head sizes based on surgical requirements. The femoral head diameters for a metal-on-polyethylene hip prosthesis have typically ranged between 22 mm and 36 mm and are typically manufactured using Cobalt-Chromium alloy. A smaller femoral head diameter is associated with lower wear of the polyethylene, however, there is a higher risk of dislocation. In this study, a finite element model of a standard commercial hip arthroplasty prosthesis was modelled with femoral head diameters ranging from 22 mm to 36 mm to investigate the wear evolution and material loss at both contacting surfaces (acetabular cup and femoral stem trunnion). The finite element model, coupled with a validated in-house wear algorithm modelled a human walking for 10 million steps. The results have shown that as the femoral head size increased, the amount of wear on all contacting surfaces increased. As the femoral head diameter increased from 22 mm to 36 mm, the highly cross-linked polyethylene (XLPE) volumetric wear increased by 61% from 98.6 mm3 to 159.5 mm3 while the femoral head taper surface volumetric wear increased by 21% from 4.18 mm3 to 4.95 mm3. This study has provided an insight into the amount of increased wear as the femoral head size increased which can highlight the life span of these prostheses in the human body.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Humans , Femur Head , Finite Element Analysis , Prosthesis Design , Prosthesis Failure , Polyethylene , Chromium Alloys
6.
Huan Jing Ke Xue ; 44(12): 6909-6920, 2023 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-38098414

ABSTRACT

Anhui, Henan, Jiangsu, and Shandong provinces were selected as the study area. A total of 599 soil samples and nine environmental factors of soil pH were collected. The spatial distribution of soil pH was modeled based on multi-scale geographically weighted regression(MGWR), mixed geographically weighted regression(Mixed GWR), geographically weighted regression(GWR), and multiple linear regression(MLR) models. Then, the spatial difference in the effect of environmental factors on soil pH was revealed using MGWR and quantile regression models. The results showed that:① soil pH showed significant global and local spatial autocorrelation at different spatial distances, and the clustering characteristics were obvious. ② The MGWR model was the best among the four models, and the Radj2 of MGWR, Mixed GWR, GWR, and MLR were 0.64, 0.62, 0.59, and 0.48, respectively. The residual of MGWR had the strongest independent distribution and the weakest spatial autocorrelation with a global Moran's I of 0.07. ③ Three types of GWR predictions showed that the spatial distribution of soil pH decreased gradually from north to south in the study area, with the highest in northern Henan and the lowest in southern Anhui. ④ MGWR modeling results showed that there was strong spatial heterogeneity of mean annual precipitation(MAP), multi-resolution valley bottom flatness(MRVBF), and elevation affecting soil pH. MAP had a stronger effect on soil pH in northern Jiangsu and most parts of Shandong. The positive effect of MRVBF on soil pH was stronger in northern Jiangsu and western Shandong. The negative effect of elevation on soil pH was stronger in northern and central Jiangsu. ⑤ The quantile regression analysis showed that the mean annual precipitation had a significant negative effect on soil pH at different quantile levels of soil pH, and influence intensity decreased with the increase in pH quantile level. MRVBF had a significant negative effect on soil pH at a low quantile level(θ=0.1 to 0.4) but had no significant effect on soil pH at a high quantile level(θ=0.5 to 0.9). These results can provide an important reference for mapping soil properties and analyzing its influence factors based on the MGWR model in large regions.

7.
Biochem Biophys Res Commun ; 681: 218-224, 2023 11 12.
Article in English | MEDLINE | ID: mdl-37783120

ABSTRACT

Epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) is clinically and genetically heterogeneous, with concurrent RB1/TP53 mutations, indicating an increased risk of transformation into small cell lung cancer (SCLC). When tumor cells convert into a different histological subtype, they lose their dependence on the original oncogenic driver, resulting in therapeutic resistance. However, the molecular details associated with this transformation remain unclear. It has been difficult to define molecular mechanisms of neuroendocrine (NE) transformation in lung cancer due to a lack of pre- and post-transformation clinical samples. In this study, we established a NSCLC cell line with concurrent RB1/TP53 mutations and built corresponding patient-derived xenograft (PDX) models to investigate the mechanisms underlying transformation to SCLC. Studying these PDX models, we demonstrate that EGFR loss facilitates lineage plasticity of lung adenocarcinoma initiated by biallelic mutations of TP53 and RB1. Gene expression analysis of these EGFR knockout tumors revealed altered expression of neuroendocrine synapse-associated lineage genes. There is an increased expression of epigenetic reprogramming factors like Sox2 and gene associated with neural development like NTRK in these EGFR knockout tumors. These findings uncovered the role of EGFR in the acquisition of plasticity, which is the ability of a cell to substantially modify its identity and take on a new phenotype, and defined a novel landscape of potential drivers of NE transformation in lung cancer.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Adenocarcinoma of Lung/pathology , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , Lung Neoplasms/pathology , Mutation , Protein Kinase Inhibitors/therapeutic use , Small Cell Lung Carcinoma/pathology , Animals
8.
Heliyon ; 9(9): e20185, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809806

ABSTRACT

The tumor microenvironment, especially the extracellular matrix (ECM), is strongly associated with tumor cell proliferation and metastasis. Numerous studies have provided evidence suggesting that fibronectin (FN) in ECM supports cancer cell escape and contributes to cell migration, resulting in distant cancer metastasis and poor outcomes in patients. In our study, it was demonstrated that FN expression was elevated in tumor tissues from highly malignant NSCLC patients, compared to those with low malignancy (p = 0.0076). Importantly, FN promoted proliferative phenotypes and strengthened tumorigenesis capabilities in NSCLC cells, including A549 and Lewis cells, leading to sustained tumor growth in vivo. Mechanistically, it was identified that FN facilitated the activation of the integrin αvß3/PI3K/AKT signaling pathway, which subsequently upregulated tumor stemness through the downstream transcription factor SOX2. Blockade of integrin αvß3 signal efficiently suppressed NSCLC proliferation and tumorigenesis both in vitro and in vivo. In conclusion, our study demonstrated that extracellular FN could facilitate NSCLC development through the integrin αvß3/PI3K/AKT/SOX2 signaling pathway. Blockade of integrin αvß3 could efficiently enhance the anticancer effects of chemotherapy, offering an innovative approach for clinical NSCLC therapy.

9.
Cell Adh Migr ; 17(1): 1-14, 2023 12.
Article in English | MEDLINE | ID: mdl-37749865

ABSTRACT

The LMNA gene encoding lamin A/C is amplified in some clear cell renal cell carcinoma (ccRCC) samples. Our data showed that depletion of the tumor suppressor PBRM1 can upregulate lamin A/C levels, and lamin A/C could interact with PBRM1. However, the role of lamin A/C in ccRCC is not yet fully understood. Our functional assays showed that although the proliferation ability was slightly impaired after LMNA depletion, the migration and invasion of ccRCC cells were significantly inhibited. This suppression was accompanied by a reduction in MMP2, MMP9, AKT/p-AKT, and Wnt/ß-catenin protein levels. Our data therefore suggest that lamin A/C, as an interaction partner of the tumor suppressor PBRM1, plays a crucial role in tumor invasion and metastasis in ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/metabolism , beta Catenin/genetics , Proto-Oncogene Proteins c-akt/metabolism , Lamin Type A/genetics , Lamin Type A/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
10.
Biomed Pharmacother ; 167: 115478, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37703661

ABSTRACT

Blood retinal barrier (BRB) damage is an important pathogenesis of diabetic retinopathy, and alleviating BRB damage has become a key target for DR treatment. We previously found that Lycopene seed polyphenols (LSP) maintained BRB integrity by inhibiting NLRP3 inflammasome-mediated inflammation. However, it is still unknown whether LSP inhibits retinal neovascularization with abnormal capillaries and its mechanism of action. Here, we employed db/db mice and hRECs to find that LSP increases the level of glycolipid metabolism, maintains the morphology of retinal endothelial cells and inhibits acellular capillary neogenesis. Mechanistic studies revealed that LSP inhibits the NLRP3 inflammasome, reduces cell apoptosis in retinal tissue, increases tight junction protein (TJ) expression, and reduces vascular endothelial growth factor (VEGF) and Ve-Cadherin in vivo and in vitro. Collectively, this study finds that LSP inhibits inflammation and angiogenesis to improve BRB function to ameliorate DR.


Subject(s)
Diabetic Retinopathy , Litchi , Mice , Animals , Inflammasomes/metabolism , Polyphenols/pharmacology , Polyphenols/metabolism , Endothelial Cells/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Vascular Endothelial Growth Factor A/metabolism , Diabetic Retinopathy/pathology , Inflammation/metabolism , Apoptosis
11.
World J Gastroenterol ; 29(31): 4809-4814, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37664155

ABSTRACT

BACKGROUND: Solitary rectal ulcer syndrome (SRUS) is a rare rectal disease with unknown etiology. Data on the genetic background in SRUS is lacking. CASE SUMMARY: Here, we report the first case of SRUS in a mother-son relationship. Gene sequencing was conducted on the whole family, which revealed an inherited CHEK2 p.H371Y mutation. The experiment preliminarily revealed that the CHEK2 mutation did not affect the expression of CHEK2 protein, but affected the function of CHEK2, resulting in the expression level changes of downstream genes such as CDC25A. CONCLUSION: SRUS is a genetic susceptibility disease where CHEK2 p.H371Y mutation may play a crucial role in the development and prognosis of SRUS.


Subject(s)
Colonic Diseases , Rectal Diseases , Humans , Ulcer/genetics , Genetic Predisposition to Disease , Germ-Line Mutation , Rare Diseases , Checkpoint Kinase 2/genetics
12.
PLoS One ; 18(6): e0286825, 2023.
Article in English | MEDLINE | ID: mdl-37315071

ABSTRACT

Soil organic matter (SOM) is a key index of soil fertility. Calculating spectral index and screening characteristic band reduce redundancy information of hyperspectral data, and improve the accuracy of SOM prediction. This study aimed to compare the improvement of model accuracy by spectral index and characteristic band. This study collected 178 samples of topsoil (0-20 cm) in the central plain of Jiangsu, East China. Firstly, visible and near-infrared (VNIR, 350-2500 nm) reflectance spectra were measured using ASD FieldSpec 4 Std-Res spectral radiometer in the laboratory, and inverse-log reflectance (LR), continuum removal (CR), first-order derivative reflectance (FDR) were applied to transform the original reflectance (R). Secondly, optimal spectral indexes (including deviation of arch, difference index, ratio index, and normalized difference index) were calculated from each type of VNIR spectra. Characteristic bands were selected from each type of spectra by the competitive adaptive reweighted sampling (CARS) algorithm, respectively. Thirdly, SOM prediction models were established based on random forest (RF), support vector regression (SVR), deep neural networks (DNN) and partial least squares regression (PLSR) methods using optimal spectral indexes, denoted here as SI-based models. Meanwhile, SOM prediction models were established using characteristic wavelengths, denoted here as CARS-based models. Finally, this research compared and assessed accuracy of SI-based models and CARS-based models, and selected optimal model. Results showed: (1) The correlation between optimal spectral indexes and SOM was enhanced, with absolute value of correlation coefficient between 0.66 and 0.83. The SI-based models predicted SOM content accurately, with the coefficient of determination (R2) and root mean square error (RMSE) values ranging from 0.80 to 0.87, 2.40 g/kg to 2.88 g/kg in validation sets, and relative percent deviation (RPD) value between 2.14 and 2.52. (2) The accuracy of CARS-based models differed with models and spectral transformations. For all spectral transformations, PLSR and SVR combined with CARS displayed the best prediction (R2 and RMSE values ranged from 0.87 to 0.92, 1.91 g/kg to 2.56 g/kg in validation sets, and RPD value ranged from 2.41 to 3.23). For FDR and CR spectra, DNN and RF models achieved more accuracy (R2 and RMSE values ranged from 0.69 to 0.91, 1.90 g/kg to 3.57 g/kg in validation sets, and RPD value ranged from 1.73 to 3.25) than LR and R spectra (R2 and RMSE values from 0.20 to 0.35, 5.08 g/kg to 6.44 g/kg in validation sets, and RPD value ranged from 0.96 to 1.21). (3) Overall, the accuracy of SI-based models was slightly lower than that of CARS-based models. But spectral index had a good adaptability to the models, and each SI-based model displayed the similar accuracy. For different spectra, the accuracy of CARS-based model differed from modeling methods. (4) The optimal CARS-based model was model CARS-CR-SVR (R2 and RMSE: 0.92 and 1.91 g/kg in validation set, RPD: 3.23). The optimal SI-based model was model SI3-SVR (R2 and RMSE: 0.87 and 2.40 g/kg in validation set, RPD: 2.57) and model SI-SVR (R2 and RMSE: 0.84 and 2.63 g/kg in validation set, RPD: 2.35).


Subject(s)
Algorithms , Fertility , China , Laboratories , Soil
13.
Zhongguo Zhong Yao Za Zhi ; 48(3): 625-635, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872225

ABSTRACT

This study explored the feasibility of mineral element content and ratios of nitrogen isotopes to discriminate the cultivation mode of Dendrobium nobile in order to provide theoretical support for the discrimination of the cultivation mode of D. nobile. The content of 11 mineral elements(N, K, Ca, P, Mg, Na, Fe, Cu, Zn, Mn, and B) and nitrogen isotope ratios in D. nobile and its substrate samples in three cultivation methods(greenhouse cultivation, tree-attached cultivation, and stone-attached cultivation) were determined. According to the analysis of variance, principal component analysis, and stepwise discriminant analysis, the samples of different cultivation types were classified. The results showed that the nitrogen isotope ratios and the content of elements except for Zn were significantly different among different cultivation types of D. nobile(P<0.05). The results of correlation analysis showed that the nitrogen isotope ratios, mineral element content, and effective component content in D. nobile were correlated with the nitrogen isotope ratio and mineral element content in the corresponding substrate samples to varying degrees. Principal component analysis can preliminarily classify the samples of D. nobile, but some samples overlapped. Through stepwise discriminant analysis, six indicators, including δ~(15)N, K, Cu, P, Na, and Ca, were screened out, which could be used to establish the discriminant model of D. nobile cultivation methods, and the overall correct discrimination rates after back-substitution test, cross-check, and external validation were all 100%. Therefore, nitrogen isotope ratios and mineral element fingerprints combined with multivariate statistical analysis could effectively discriminate the cultivation types of D. nobile. The results of this study provide a new method for the identification of the cultivation type and production area of D. nobile and an experimental basis for the quality evaluation and quality control of D. nobile.


Subject(s)
Dendrobium , Minerals , Discriminant Analysis , Multivariate Analysis , Nitrogen Isotopes
14.
Phytomedicine ; 113: 154732, 2023 May.
Article in English | MEDLINE | ID: mdl-36933457

ABSTRACT

BACKGROUND: New therapeutic approaches are required to improve the outcomes of lung cancer (LC), a leading cause of cancer-related deaths worldwide. Chinese herbal medicine formulae widely used in China provide a unique opportunity for improving LC treatment, and the Shuang-Huang-Sheng-Bai (SHSB) formula is a typical example. However, the underlying mechanisms of action remains unclear. PURPOSE: This study aimed to confirm the efficacy of SHSB against lung adenocarcinoma (LUAD), which is a major histological type of LC, unveil the downstream targets of this formula, and assess the clinical relevance and biological roles of the newly identified target. METHODS: An experimental metastasis mouse model and a subcutaneous xenograft mouse model were used to evaluate the anti-cancer activity of SHSB. Multi-omics profiling of subcutaneous tumors and metabolomic profiling of sera were performed to identify downstream targets, especially the metabolic targets of SHSB. A clinical trial was conducted to verify the newly identified metabolic targets in patients. Next, the metabolites and enzymes engaged in the metabolic pathway targeted by SHSB were measured in clinical samples. Finally, routine molecular experiments were performed to decipher the biological functions of the metabolic pathways targeted by SHSB. RESULTS: Oral SHSB administration showed overt anti-LUAD efficacy as revealed by the extended overall survival of the metastasis model and impaired growth of implanted tumors in the subcutaneous xenograft model. Mechanistically, SHSB administration altered protein expression in the post-transcriptional layer and modified the metabolome of LUAD xenografts. Integrative analysis demonstrated that SHSB markedly inhibited acetyl-CoA synthesis in tumors by post-transcriptionally downregulating ATP-citrate lyase (ACLY). Consistently, our clinical trial showed that oral SHSB administration declined serum acetyl-CoA levels of patients with LC. Moreover, acetyl-CoA synthesis and ACLY expression were both augmented in clinical LUAD tissues of patients, and high intratumoral ACLY expression predicted a detrimental prognosis. Finally, we showed that ACLY-mediated acetyl-CoA synthesis is essential for LUAD cell growth by promoting G1/S transition and DNA replication. CONCLUSION: Limited downstream targets of SHSB for LC treatment have been reported in previous hypothesis-driven studies. In this study, we conducted a comprehensive multi-omics investigation and demonstrated that SHSB exerted its anti-LUAD efficacy by actively and post-transcriptionally modulating protein expression and particularly restraining ACLY-mediated acetyl-CoA synthesis.


Subject(s)
Adenocarcinoma of Lung , Drugs, Chinese Herbal , Lung Neoplasms , Humans , Mice , Animals , ATP Citrate (pro-S)-Lyase/genetics , ATP Citrate (pro-S)-Lyase/metabolism , Acetyl Coenzyme A/metabolism , Drugs, Chinese Herbal/pharmacology , Adenocarcinoma of Lung/drug therapy , Lung Neoplasms/drug therapy
15.
ACS Appl Mater Interfaces ; 15(12): 15429-15438, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36920173

ABSTRACT

Solid-state lithium-metal batteries have great potential to simultaneously achieve high safety and high energy density for energy storage. However, the low ionic conductivity of the solid electrolyte and large electrode/electrolyte interfacial impedance are bottlenecks. A composite solid electrolyte (CSE) that integrates electrospun Li0.33La0.557TiO3 (LLTO) nanofibers, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is fabricated in this work. The effects of the LLTO filler fraction and morphology (spherical vs fibrous) on CSE conductivity are examined. Additionally, a fluorine-rich interlayer based on succinonitrile, fluoroethylene carbonate, and LiTFSI, denoted as succinonitrile interlayer (SNI), is developed to reduce the large interfacial impedance. The use of SNI rather than a conventional ester-based interlayer (EBI) effectively decreases the Li//CSE interfacial resistance and suppresses unfavorable interfacial side reactions. The LiF- and CFx-rich solid electrolyte interphase (SEI), derived from SNI, on the Li metal electrode, mitigates the accumulation of dead Li and excessive SEI. Importantly, dehydrofluorination reactions of PVDF-HFP are significantly reduced by the introduction of SNI. A symmetric Li//CSE//Li cell with SNI exhibits a much longer cycle life than that of an EBI counterpart. A Li//CSE@SNI//LiFePO4 cell shows specific capacities of 150 and 112 mAh g-1 at 0.1 and 2 C (based on LiFePO4), respectively. After 100 charge-discharge cycles, 98% of the initial capacity is retained.

16.
J Mech Behav Biomed Mater ; 139: 105673, 2023 03.
Article in English | MEDLINE | ID: mdl-36669263

ABSTRACT

As the number of young and active individuals undergoing Total Hip Arthroplasty (THA) are increasing yearly, there is a need for hip prostheses to have increased longevity. Current investigations into the longevity of these prostheses only include walking as the patient's activity as there is limited data on the amount and intensity of other activity performed by the patient. To further understand the evolution of wear and increase the longevity of these implants, the impact of different activities on the hip prosthesis needs to be investigated. In this study, a finite element model and wear algorithm was developed to simulate both walking and bicycling over a 5-year period. The XLPE acetabular cup volumetric wear rate was found to be 33 mm3/yr while the femoral head taper wear rates were between 0.01 - 0.39 mm3/yr. The results showed that by adding bicycling of up to 80 km per week with normal walking activity, the XLPE mean volumetric wear rate increased by 67% and the metallic mean volumetric wear rate by 11%. However, the patient may gain further health benefits from this additional activity. Assistive electric bikes may also be used to further reduce the loads on the hip joint, allowing for lower amounts of wear.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Humans , Finite Element Analysis , Bicycling , Prosthesis Failure , Prosthesis Design , Polyethylene
17.
Taiwan J Obstet Gynecol ; 62(1): 171-174, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36720535

ABSTRACT

OBJECTIVE: To report a case of pyomyoma, a serious complication of the uterine leiomyoma, in a postpartum woman. As the occurrence of pyomyoma in association with pregnancy is rather rare, a brief literature review of the condition in pregnant women is provided. CASE REPORT: A 41-year-old woman was found to have pyomyoma following persistent fever during the postpartum period of a first-time vaginal delivery. Her pregnancy course was complicated by preterm labor, for which the patient had received tocolysis since 30-week gestation. The pyomyoma was promptly removed by myomectomy on day-6 postpartum. CONCLUSION: Pyomyoma can occur in both pre- and post-menopausal women, and may even complicate pregnancies. Therefore, obstetricians and gynecologists should be wary of pyomyoma in postpartum women with histories of leiomyoma that present with sepsis of unknown focus that is refractory to standard antibiotics. Fertility may be preserved through timely diagnosis, followed by a prompt intervention.


Subject(s)
Bacteremia , Leiomyoma , Uterine Myomectomy , Uterine Neoplasms , Humans , Infant, Newborn , Female , Pregnancy , Adult , Uterine Neoplasms/complications , Uterine Neoplasms/surgery , Uterine Neoplasms/diagnosis , Leiomyoma/complications , Leiomyoma/surgery , Leiomyoma/diagnosis , Uterine Myomectomy/adverse effects , Bacteremia/complications , Bacteremia/diagnosis , Fever/etiology
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970531

ABSTRACT

This study explored the feasibility of mineral element content and ratios of nitrogen isotopes to discriminate the cultivation mode of Dendrobium nobile in order to provide theoretical support for the discrimination of the cultivation mode of D. nobile. The content of 11 mineral elements(N, K, Ca, P, Mg, Na, Fe, Cu, Zn, Mn, and B) and nitrogen isotope ratios in D. nobile and its substrate samples in three cultivation methods(greenhouse cultivation, tree-attached cultivation, and stone-attached cultivation) were determined. According to the analysis of variance, principal component analysis, and stepwise discriminant analysis, the samples of different cultivation types were classified. The results showed that the nitrogen isotope ratios and the content of elements except for Zn were significantly different among different cultivation types of D. nobile(P<0.05). The results of correlation analysis showed that the nitrogen isotope ratios, mineral element content, and effective component content in D. nobile were correlated with the nitrogen isotope ratio and mineral element content in the corresponding substrate samples to varying degrees. Principal component analysis can preliminarily classify the samples of D. nobile, but some samples overlapped. Through stepwise discriminant analysis, six indicators, including δ~(15)N, K, Cu, P, Na, and Ca, were screened out, which could be used to establish the discriminant model of D. nobile cultivation methods, and the overall correct discrimination rates after back-substitution test, cross-check, and external validation were all 100%. Therefore, nitrogen isotope ratios and mineral element fingerprints combined with multivariate statistical analysis could effectively discriminate the cultivation types of D. nobile. The results of this study provide a new method for the identification of the cultivation type and production area of D. nobile and an experimental basis for the quality evaluation and quality control of D. nobile.


Subject(s)
Dendrobium , Minerals , Discriminant Analysis , Multivariate Analysis , Nitrogen Isotopes
19.
Chinese Journal of Oncology ; (12): 165-169, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-969820

ABSTRACT

Objective: To observe the clinical pathology features, and immune microenvironment of HER-2 intratumoral heterogeneity breast cancer. Methods: Thirty cases of HER-2 intratumoral heterogeneous breast cancer were retrospectively analyzed in Tianjin Medical University Cancer Institute and Hospital from November 2017 to June 2020. HER-2 expression was detected by immunohistochemistry and verified by dual color silver-enhanced in-situ hybridization (D-SISH). HER-2 intratumoral positive and negative regions were divided. The pathological characteristics, subtype, and the level of tumor infiltrating lymphocytes (TILs) and the expression of programmed cell death-ligand 1 (PD-L1) were evaluated respectively. Results: The proportion of HER-2 positive cells of the breast cancer ranged from 10% to 90%. The pathological type was mainly invasive non-special typecarcinoma. Six cases presented different pathological types between HER-2 positive and negative regions. The HER-2-positive areas included 2 cases of carcinoma with apocrine differentiation, and the negative areas included 2 cases of invasive micropapillary carcinoma, 1 case of invasive papillary carcinoma, and 1 case of carcinoma with apocrine differentiation. In HER-2 positive regions, 17 cases were Luminal B and 13 cases were HER-2 overexpressed types. There were 22 cases of Luminal B and 8 cases of triple negative tumors in the HER-2 negative areas. The levels of TILs in HER-2 positive and negative areas accounted for 53.3% (16/30) and 26.7% (8/30), respectively, with a statistically significant difference (P=0.035). The positive expression of PD-L1 in HER-2 positive area and HER-2 negative area were 6 cases and 9 cases, respectively. Among 8 cases with HER-2 negative regions containing triple negative components, 4 cases were positive for PD-L1 expression. Conclusions: In the case of HER-2 intratumoral heterogeneity, it is necessary to pay attention to both HER-2 positive and negative regions, and evaluate subtype separately as far as possible. For HER-2 intratumoral heterogeneous breast cancer containing triple negative components, the treatment mode can be optimized by refining the intratumoral expression of PD-L1.


Subject(s)
Humans , Female , Breast Neoplasms/pathology , Retrospective Studies , B7-H1 Antigen/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Carcinoma , Tumor Microenvironment , Triple Negative Breast Neoplasms/pathology , Prognosis , Biomarkers, Tumor/metabolism
20.
Sci Adv ; 8(46): eadc9222, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36383652

ABSTRACT

Cell fate determination of human mesenchymal stem/stromal cells (hMSCs) is precisely regulated by lineage-specific transcription factors and epigenetic enzymes. We found that CTR9, a key scaffold subunit of polymerase-associated factor complex (PAFc), selectively regulates hMSC differentiation to osteoblasts and chondrocytes, but not to adipocytes. An in vivo ectopic osteogenesis assay confirmed the essentiality of CTR9 in hMSC-derived bone formation. CTR9 counteracts the activity of Enhancer Of Zeste 2 (EZH2), the epigenetic enzyme that deposits H3K27me3, in hMSCs. Accordingly, CTR9 knockdown (KD) hMSCs gain H3K27me3 mark, and the osteogenic differentiation defects of CTR9 KD hMSCs can be partially rescued by treatment with EZH2 inhibitors. Transcriptome analyses identified bone morphology protein-2 (BMP-2) as a downstream effector of CTR9. BMP-2 secretion, membrane anchorage, and the BMP-SMAD pathway were impaired in CTR9 KD MSCs, and the effects were rescued by BMP-2 supplementation. This study uncovers an epigenetic mechanism engaging the CTR9-H3K27me3-BMP-2 axis to regulate the osteochondral lineage differentiation of hMSCs.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Humans , Mesenchymal Stem Cells/metabolism , Epigenesis, Genetic , Histones/metabolism , Cell Differentiation/genetics , Osteoblasts , Phosphoproteins/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...