Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Neural Netw ; 172: 106136, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38266472

ABSTRACT

Interictal epileptiform discharges (IED) as large intermittent electrophysiological events are associated with various severe brain disorders. Automated IED detection has long been a challenging task, and mainstream methods largely focus on singling out IEDs from backgrounds from the perspective of waveform, leaving normal sharp transients/artifacts with similar waveforms almost unattended. An open issue still remains to accurately detect IED events that directly reflect the abnormalities in brain electrophysiological activities, minimizing the interference from irrelevant sharp transients with similar waveforms only. This study then proposes a dual-view learning framework (namely V2IED) to detect IED events from multi-channel EEG via aggregating features from the two phases: (1) Morphological Feature Learning: directly treating the EEG as a sequence with multiple channels, a 1D-CNN (Convolutional Neural Network) is applied to explicitly learning the deep morphological features; and (2) Spatial Feature Learning: viewing the EEG as a 3D tensor embedding channel topology, a CNN captures the spatial features at each sampling point followed by an LSTM (Long Short-Term Memories) to learn the evolution of these features. Experimental results from a public EEG dataset against the state-of-the-art counterparts indicate that: (1) compared with the existing optimal models, V2IED achieves a larger area under the receiver operating characteristic (ROC) curve in detecting IEDs from normal sharp transients with a 5.25% improvement in accuracy; (2) the introduction of spatial features improves performance by 2.4% in accuracy; and (3) V2IED also performs excellently in distinguishing IEDs from background signals especially benign variants.


Subject(s)
Epilepsy , Humans , Epilepsy/diagnosis , Electroencephalography/methods , Neural Networks, Computer , ROC Curve
2.
Article in English | MEDLINE | ID: mdl-37015612

ABSTRACT

Artifact removal has been an open critical issue for decades in tasks centering on EEG analysis. Recent deep learning methods mark a leap forward from the conventional signal processing routines; however, those in general still suffer from insufficient capabilities 1) to capture potential temporal dependencies embedded in EEG and 2) to adapt to scenarios without a priori knowledge of artifacts. This study proposes an approach (namely DuoCL) to deep artifact removal with a dual-scale CNN (Convolutional Neural Network)-LSTM (Long Short-Term Memory) model, operating on the raw EEG in three phases: 1) Morphological Feature Extraction, a dual-branch CNN utilizes convolution kernels of two different scales to learn morphological features (individual sample); 2) Feature Reinforcement, the dual-scale features are then reinforced with temporal dependencies (inter-sample) captured by LSTM; and 3) EEG Reconstruction, the resulting feature vectors are finally aggregated to reconstruct the artifact-free EEG via a terminal fully connected layer. Extensive experiments have been performed to compare DuoCL to six state-of-the-art counterparts (e.g., 1D-ResCNN and NovelCNN). DuoCL can reconstruct more accurate waveforms and achieve the highest SNR & correlation ( CC) as well as the lowest error ( RRMSEt & RRMSEf). In particular, DuoCL holds potentials in providing a high-quality removal of unknown and hybrid artifacts.

SELECTION OF CITATIONS
SEARCH DETAIL
...