Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2309992, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38774946

ABSTRACT

Radiotherapy demonstrates a synergistic effect with immunotherapy by inducing a transformation of "immune cold" tumors into "immune hot" tumors in triple negative breast cancer (TNBC). Nevertheless, the effectiveness of immunotherapy is constrained by low expression of tumor-exposed antigens, inadequate inflammation, and insufficient tumor infiltrating lymphocyte (TILs). To address this predicament, novel lutecium-based rare earth nanoparticles (RENPs) are synthesized with the aim of amplifying radiation effect and tumor immune response. The nanoprobe is characterized by neodymium-based down-conversion fluorescence, demonstrating robust photostability, biocompatibility, and targetability. The conjugation of RENPs with a CXCR4 targeted drug enables precise delineation of breast tumors using a near-infrared imaging system and improves radiation efficacy via lutetium-based radio-sensitizer in vivo. Furthermore, the study shows a notable enhancement of immune response through the induction of immunogenic cell death and recruitment of TILs, resulting in the inhibition of tumor progression both in vitro and in vivo models following the administration of nanoparticles. Hence, the novel multifunctional nanoprobes incorporating various lanthanide elements offer the potential for imaging-guided tumor delineation, radio-sensitization, and immune activation post-radiation, thus presenting an efficient radio-immunotherapeutic approach for TNBC.

2.
J Transl Med ; 22(1): 315, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539235

ABSTRACT

BACKGROUND: The treatment for colon adenocarcinoma (COAD) faces challenges in terms of immunotherapy effectiveness due to multiple factors. Because of the high tumor specificity and immunogenicity, neoantigen has been considered a pivotal target for cancer immunotherapy. Therefore, this study aims to identify and predict the potential tumor antigens of MUC somatic mutations (MUCmut) in COAD. METHODS: Three databases of TCGA, TIMER2.0, and cBioPortal were used for a detailed evaluation of the association between MUCmut and multi-factors like tumor mutation burden (TMB), microsatellite instability (MSI), prognosis, and the tumor microenvironment within the context of total 2242 COAD patients. Next, TSNAdb and the differential agretopicity index (DAI) were utilized to predict high-confidence neopeptides for MUCmut based on 531 COAD patients' genomic information. DAI was calculated by subtraction of its predicted HLA binding affinity of the MUCmut peptide from the corresponding wild-type peptide. RESULTS: The top six mutation frequencies (14 to 2.9%) were from MUC16, MUC17, MUC5B, MUC2, MUC4 and MUC6. COAD patients with MUC16 and MUC4 mutations had longer DFS and PFS. However, patients with MUC13 and MUC20 mutations had shorter OS. Patients with the mutation of MUC16, MUC5B, MUC2, MUC4, and MUC6 exhibited higher TMB and MSI. Moreover, these mutations from the MUC family were associated with the infiltration of diverse lymphocyte cells and the expression of immune checkpoint genes. Through TSNAdb 1.0/NetMHCpan v2.8, 452 single nucleotide variants (SNVs) of MUCmut peptides were identified. Moreover, through TSNAdb2.0/NetMHCpan v4.0, 57 SNVs, 1 Q-frame shift (TS), and 157 short insertions/deletions (INDELs) of MUCmut were identified. Finally, 10 high-confidence neopeptides of MUCmut were predicted by DAI. CONCLUSIONS: Together, our findings establish the immunogenicity and therapeutic potential of mutant MUC family-derived neoantigens. Through combining the tools of TSNAdb and DAI, a group of novel MUCmut neoantigens were identified as potential targets for immunotherapy.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Humans , Mutation/genetics , Antigens, Neoplasm/metabolism , CA-125 Antigen/genetics , Peptides/chemistry , Tumor Microenvironment
3.
Int J Nanomedicine ; 18: 5141-5157, 2023.
Article in English | MEDLINE | ID: mdl-37705867

ABSTRACT

Background: Durable responses to immune-checkpoint blocking therapy (ICT) targeting programmed cell death protein-1/ligand-1 (PD-1/PD-L1) have improved outcomes for patients with triple negative breast cancer (TNBC). Unfortunately, only 19-23% of patients benefit from ICT. Hence, non-invasive strategies evaluating responses to therapy and selecting patients who will benefit from ICT are critical issues for TNBC immunotherapy. Methods: We developed a novel nanoparticle-Atezolizumab (NPs-Ate) consisting of indocyanine green (ICG), gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA), human serum albumin (HSA), and Atezolizumab. The efficiency of Gd-DTPA linking was verified using mass spectrometry, and the size of NPs-Ate was characterized using Nano-flow cytometry. The synthesized NPs-Ate were evaluated for fluorescence stability, penetration depth, and target specificity. TNBC cell lines and tumor-bearing mice models were used to identify the feasibility of this dual-modal second near-infrared/magnetic resonance imaging (NIR-II/MRI) system. Additionally, ICT combination with chemotherapy or radiotherapy in TNBC tumor-bearing mice models were used to assess dynamic changes of PD-L1 and predicted therapeutic responses with NPs-Ate. Results: Atezolizumab, a monoclonal antibody, was successfully labeled with ICG and Gd-DTPA to generate NPs-Ate. This demonstrated strong fluorescence signals in our NIR-II imaging system, and relaxivity (γ1) of 9.77 mM-1 s-1. In tumor-bearing mice, the NIR-II imaging signal background ratio (SBR) reached its peak of 11.51 at 36 hours, while the MRI imaging SBR reached its highest as 1.95 after 12 hours of tracer injection. NPs-Ate specifically targets cells and tumors expressing PD-L1, enabling monitoring of PD-L1 status during immunotherapy. Combining therapies led to inhibited tumor growth, prolonged survival, and increased PD-L1 expression, effectively monitored using the non-invasive NPs-Ate imaging system. Conclusion: The NIR-II/MRI NPs-Ate effectively reflected PD-L1 status during immunotherapy. Real-time and non-invasive immunotherapy and response/prognosis monitoring under NIR-II/MRI imaging guidance in TNBC is a promising and innovative technology with potential for extensive clinical applications in the future.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , B7-H1 Antigen , Gadolinium DTPA , Immunotherapy , Magnetic Resonance Imaging , Indocyanine Green
4.
Cancer Res ; 83(20): 3428-3441, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37540231

ABSTRACT

Sentinel lymph node (SLN) biopsy plays a critical role in axillary staging of breast cancer. However, traditional SLN mapping does not accurately discern the presence or absence of metastatic disease. Detection of SLN metastasis largely hinges on examination of frozen sections or paraffin-embedded tissues post-SLN biopsy. To improve detection of SLN metastasis, we developed a second near-infrared (NIR-II) in vivo fluorescence imaging system, pairing erbium-based rare-earth nanoparticles (ErNP) with bright down-conversion fluorescence at 1,556 nm. To visualize SLNs bearing breast cancer, ErNPs were modified by balixafortide (ErNPs@POL6326), a peptide antagonist of the chemokine receptor CXCR4. The ErNPs@POL6326 probes readily drained into SLNs when delivered subcutaneously, entering metastatic breast tumor cells specifically via CXCR4-mediated endocytosis. NIR fluorescence signals increased significantly in tumor-positive versus tumor-negative SLNs, enabling accurate determination of SLN breast cancer metastasis. In a syngeneic mouse mammary tumor model and a human breast cancer xenograft model, sensitivity for SLN metastasis detection was 92.86% and 93.33%, respectively, and specificity was 96.15% and 96.08%, respectively. Of note, the probes accurately detected both macrometastases and micrometastases in SLNs. These results overall underscore the potential of ErNPs@POL6326 for real-time visualization of SLNs and in vivo screening for SLN metastasis. SIGNIFICANCE: NIR-IIb imaging of a rare-earth nanoprobe that is specifically taken up by breast cancer cells can accurately detect breast cancer macrometastases and micrometastases in sentinel lymph nodes.


Subject(s)
Breast Neoplasms , Sentinel Lymph Node , Animals , Mice , Humans , Female , Lymphatic Metastasis/diagnostic imaging , Lymphatic Metastasis/pathology , Sentinel Lymph Node/diagnostic imaging , Sentinel Lymph Node/pathology , Breast Neoplasms/pathology , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Neoplasm Micrometastasis/pathology , Sentinel Lymph Node Biopsy/methods , Neoplasm Staging , Axilla/pathology
5.
Adv Sci (Weinh) ; 10(10): e2205294, 2023 04.
Article in English | MEDLINE | ID: mdl-36721054

ABSTRACT

Breast-conserving surgery (BCS) is the predominant treatment approach for initial breast cancer. However, due to a lack of effective methods evaluating BCS margins, local recurrence caused by positive margins remains an issue. Accordingly, radiation therapy (RT) is a common modality in patients with advanced breast cancer. However, while RT also protects normal tissue and enhances tumor bed doses to improve therapeutic effects, current radiosensitizers cannot meet these urgent clinical needs. To address this, a novel self-assembled multifunctional nanoprobe (NP) gadolinium (Gd)-diethylenetriaminepentaacetic acid-human serum albumin (HSA)@indocyanine green-Bevacizumab (NPs-Bev) is synthesized to improve the efficacy of fluorescence-image-guided BCS and RT. Fluorescence image guidance of the second near infrared NP improves complete resection in tumor-bearing mice and accurately discriminates between benign and malignant mammary tissue in transgenic mice. Moreover, targeting tumors with NPs induces more reactive oxygen species under X-ray radiation therapy, which not only increases RT sensitivity, but also reduces tumor progression in mice. Interestingly, self-assembled NPs-Bev using HSA, the magnetic resonance contrast agent and Bevacizumab-targeting vascular growth factor A, which are clinically safe reagents, are safe in vitro and in vivo. Therefore, the novel self-assembled NPs provide a solid precision therapy platform to treat breast cancer.


Subject(s)
Breast Neoplasms , Humans , Mice , Animals , Female , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Bevacizumab/therapeutic use , Indocyanine Green/therapeutic use , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy
6.
Crit Rev Oncol Hematol ; 176: 103746, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35752425

ABSTRACT

Recently, immune checkpoint therapy (ICT) represented by programmed cell death1 (PD-1) and its major ligands, programmed death ligand 1 (PD-L1), has achieved significant success. Detection of PD-L1 by immunohistochemistry (IHC) is a classic method to guide the treatment of ICT patients. However, PD-L1 expression in the tumor microenvironment is highly complex. Thus, PD-L1 IHC is inadequate to fully understand the relevance of PD-L1 levels in the whole body and their dynamics to improve therapeutic outcomes. Intriguingly, numerous studies have revealed that molecular imaging technologies could potentially meet this need. Therefore, the purpose of this narrative review is to summarize the preclinical and clinical application of ICT guided by molecular imaging technology, and to explore the future opportunities and practical difficulties of these innovations.


Subject(s)
B7-H1 Antigen , Tumor Microenvironment , Humans , Immunohistochemistry , Molecular Imaging , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...