Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 791
Filter
1.
Nat Commun ; 15(1): 5674, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971831

ABSTRACT

Quiescence, a hallmark of adult neural stem cells (NSCs), is required for maintaining the NSC pool to support life-long continuous neurogenesis in the adult dentate gyrus (DG). Whether long-lasting epigenetic modifications maintain NSC quiescence over the long term in the adult DG is not well-understood. Here we show that mice with haploinsufficiency of Setd1a, a schizophrenia risk gene encoding a histone H3K4 methyltransferase, develop an enlarged DG with more dentate granule cells after young adulthood. Deletion of Setd1a specifically in quiescent NSCs in the adult DG promotes their activation and neurogenesis, which is countered by inhibition of the histone demethylase LSD1. Mechanistically, RNA-sequencing and CUT & RUN analyses of cultured quiescent adult NSCs reveal Setd1a deletion-induced transcriptional changes and many Setd1a targets, among which down-regulation of Bhlhe40 promotes quiescent NSC activation in the adult DG in vivo. Together, our study reveals a Setd1a-dependent epigenetic mechanism that sustains NSC quiescence in the adult DG.


Subject(s)
Dentate Gyrus , Epigenesis, Genetic , Hippocampus , Histone-Lysine N-Methyltransferase , Neural Stem Cells , Neurogenesis , Animals , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Mice , Neurogenesis/genetics , Dentate Gyrus/cytology , Dentate Gyrus/metabolism , Hippocampus/metabolism , Hippocampus/cytology , Histone Demethylases/metabolism , Histone Demethylases/genetics , Male , Adult Stem Cells/metabolism , Adult Stem Cells/cytology , Mice, Knockout , Mice, Inbred C57BL , Female
2.
Infect Dis Poverty ; 13(1): 54, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982550

ABSTRACT

BACKGROUND: Rickettsia and related diseases have been identified as significant global public health threats. This study involved comprehensive field and systematic investigations of various rickettsial organisms in Yunnan Province. METHODS: Between May 18, 2011 and November 23, 2020, field investigations were conducted across 42 counties in Yunnan Province, China, encompassing small mammals, livestock, and ticks. Preliminary screenings for Rickettsiales involved amplifying the 16S rRNA genes, along with additional genus- or species-specific genes, which were subsequently confirmed through sequencing results. Sequence comparisons were carried out using the Basic Local Alignment Search Tool (BLAST). Phylogenetic relationships were analyzed using the default parameters in the Molecular Evolutionary Genetics Analysis (MEGA) program. The chi-squared test was used to assess the diversities and component ratios of rickettsial agents across various parameters. RESULTS: A total of 7964 samples were collected from small mammals, livestock, and ticks through Yunnan Province and submitted for screening for rickettsial organisms. Sixteen rickettsial species from the genera Rickettsia, Anaplasma, Ehrlichia, Neoehrlichia, and Wolbachia were detected, with an overall prevalence of 14.72%. Among these, 11 species were identified as pathogens or potential pathogens to humans and livestock. Specifically, 10 rickettsial organisms were widely found in 42.11% (24 out of 57) of small mammal species. High prevalence was observed in Dremomys samples at 5.60%, in samples from regions with latitudes above 4000 m or alpine meadows, and in those obtained from Yuanmou County. Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis were broadly infecting multiple genera of animal hosts. In contrast, the small mammal genera Neodon, Dremomys, Ochotona, Anourosorex, and Mus were carrying individually specific rickettsial agents, indicating host tropism. There were 13 rickettsial species detected in 57.14% (8 out of 14) of tick species, with the highest prevalence (37.07%) observed in the genus Rhipicephalus. Eight rickettsial species were identified in 2375 livestock samples. Notably, six new Rickettsiales variants/strains were discovered, and Candidatus Rickettsia longicornii was unambiguously identified. CONCLUSIONS: This large-scale survey provided further insight into the high genetic diversity and overall prevalence of emerging Rickettsiales within endemic hotspots in Yunnan Province. The potential threats posed by these emerging tick-borne Rickettsiales to public health warrant attention, underscoring the need for effective strategies to guide the prevention and control of emerging zoonotic diseases in China.


Subject(s)
Genetic Variation , Phylogeny , Rickettsiales , Ticks , China/epidemiology , Animals , Prevalence , Rickettsiales/genetics , Rickettsiales/isolation & purification , Rickettsiales/classification , Ticks/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , Livestock/microbiology , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Rickettsia Infections/veterinary , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , Mammals/microbiology , Humans
3.
Cell Rep ; 43(6): 114339, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38852158

ABSTRACT

Quiescent adult neural stem cells (NSCs) in the mammalian brain arise from proliferating NSCs during development. Beyond acquisition of quiescence, an adult NSC hallmark, little is known about the process, milestones, and mechanisms underlying the transition of developmental NSCs to an adult NSC state. Here, we performed targeted single-cell RNA-seq analysis to reveal the molecular cascade underlying NSC development in the early postnatal mouse dentate gyrus. We identified two sequential steps, first a transition to quiescence followed by further maturation, each of which involved distinct changes in metabolic gene expression. Direct metabolic analysis uncovered distinct milestones, including an autophagy burst before NSC quiescence acquisition and cellular reactive oxygen species level elevation along NSC maturation. Functionally, autophagy is important for the NSC transition to quiescence during early postnatal development. Together, our study reveals a multi-step process with defined milestones underlying establishment of the adult NSC pool in the mammalian brain.


Subject(s)
Autophagy , Hippocampus , Neural Stem Cells , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Animals , Mice , Hippocampus/metabolism , Hippocampus/cytology , Neurogenesis , Dentate Gyrus/metabolism , Dentate Gyrus/cytology , Dentate Gyrus/growth & development , Cell Differentiation , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Adult Stem Cells/metabolism , Adult Stem Cells/cytology , Single-Cell Analysis , Cell Proliferation
4.
One Health ; 18: 100735, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38711479

ABSTRACT

Background: Borrelia miyamotoi is a spirochete species transmitted via hard ticks. Following its discovery in Japan, this pathogen has been detected around the world, and is increasingly confirmed as a human pathogen causing febrile disease, namely relapsing fever. Its presence has been confirmed in the Northeast China. However, there is little information regarding the presence of B. miyamotoi and other hard-tick-borne relapsing fever spirochetes in southern China including Yunnan province, where tick and animal species are abundant and many people both inhabit and visit for recreation. Methods: For the present study, we collected samples of ticks, wildlife, and domestic animal hosts from different counties in Yunnan province. Nucleic acids from samples were extracted, and the presence of B. miyamotoi and other relapsing fever spirochetes was confirmed using polymerase chain reaction (PCR) for the 16S rRNA specific target gene fragment. The positive samples were then amplified for partial genome of the flaB and glpQ genes. Statistical differences in its distribution were analyzed by SPSS 20 software. Sequence of partial 16S rRNA, flaB and glpQ genome were analyzed and phylogenetic trees were constructed. Results: A total of 8260 samples including 2304 ticks, 4120 small mammals and 1836 blood of domestic animal hosts were collected for screening for infection of B. miyamotoi and other relapsing fever spirochetes. Cattle and sheep act as the main hosts and Rhipicephalus microplus, Haemaphysalis nepalensis, H. kolonini and Ixodes ovatus were identified as the important vector host with high prevalence or wide distribution. Only one Mus caroli (mouse) and one Sorex alpinus (shrew) were confirmed positive for relapsing fever spirochetes. Evidence of vertical transmission in ticks was also confirmed. Two known strains of B. miyamotoi and one novel relapsing fever spirochetes, B. theileri-like agent, were confirmed and described with their host adaptation, mutation, and potential risk of spreading and spillover for human beings. Conclusions: Our results provide new evidence of relapsing fever spirochetes in vector and animal hosts in Yunnan province based on large sample sizes, and offer guidance on further investigation, surveillance and monitoring of this pathogen.

5.
Plant Dis ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812364

ABSTRACT

Macadamia (Macadamia ternifolia Maiden and Betche) belongs to the Proteaceae family (Li et al. 2022). In the hilly areas of Guangxi (southern China), macadamia trees are an important source of revenue. The planting area in Guangxi has increased in recent years, exceeding 53,333 hectares by the end of 2022, but this increase is also associated with emergency of, macadamia diseases. Leaf blight symptoms were observed in 37/241 macadamia trees (15% incidence) in a plantation in Nanning, Guangxi province in China, during June, 2022. Disease severity on infected trees ranged from 5% to 60%. The disease developed from the tips or margins of leaves, causing the leaves to turn brown, and later gradually withered (Fig. 1 A). Ten leaves with lesions were collected from five macadamia trees (two leaves per tree. Thereafter, small segments (3 to 4 mm²) excised from the margins of ten lesions were surface sterilized in 75% ethanol for 30 s and 1% hypochlorite for 90 s and Page 1 of 6 2 rinsed in sterile water, before plating onto potato dextrose agar (PDA) medium. Plates were incubated under lighting during the daytime, and darkness at night-time for 5 days at 25℃. Twenty-two purified colonies were generated by subculturing hyphal tips, of which eight exhibited similar morphology and were further characterized. The colonies on PDA were gray with a white outer ring and flat lawn on the surface (Fig. 1 B). The pycnidia were superficial to semi-immersed on PDA, solitary to aggregated, globose to sub-globose, brown to black and oozed yellow mucilaginous masses (Fig.1 C). The α-conidia were unicellular, hyaline elliptical or fusiform, and measuring 4-8 × 1.9-4 µm (n=30) , whereas the ß-conidia were hyaline, long, straight or curved, measuring 20-23 × 0.9-2 µm (n=30) (Fig. 1 D-E). The morphological features were similar to Diaporthe hongkongensis (Dissanayake et al. 2015). The eight morphologically similar isolates were identified as D. hongkongensis using the internal transcribed spacer (ITS) region, but only one isolate, JG11, was selected for further molecular identification. Five target genes, including the ITS region, translation elongation factor 1 alpha (EF1-α), beta-tubulin genes (TUB2), calmodulin (CAL), and histone H3 (HIS) were amplified and sequenced using primers ITS1/ITS4, EF1-728F/EF1-986R, Bt2a/Bt2b, CAL-228F/CAL-737R, and CYLH3F/H3-1b, respectively (Carbone and Kohn 1999). The sequences were deposited in GenBank under accession numbers OQ932790 (ITS) and OR147955-58 for EF1-α, TUB, CAL and HIS genes, respectively. BLAST search of GenBank showed that ITS, EF1-α, TUB, CAL, and HIS sequences of JG11 were similar to Page 2 of 6 3 those of D. hongkongensis NR111848 (99.22% identity), KY433566 (99.72%), MW208603 (99.42%), MW221740 (99.80%), and MW221661 (99.79%), respectively. Phylogenetic analysis of concatenated sequences was performed with IQ-TREE software. JG11 was grouped in the same clade as other Diaporthe hongkongensis isolates (Fig. 2). Pathogenicity experiments were carried out on healthy macadamia trees in a greenhouse. Three macadamia trees were used as negative controls where five uninjured leaves per tree were sprayed with sterile distilled water. Uninjured five leaves per tree of three other macadamia trees were sprayed with conidia suspension of the isolate JG11 at a concentration of 1×106. Each treatment was repeated 3 times independently, with 5 leaves per tree (Liu et al. 2023; Havill et al. 2023; Zhang et al. 2022). Plastic bags were placed over all inoculated leaves. The average daily temperature and relative humidity in the greenhouse were 32°C and 65%, respectively. Two days later, browning appeared on the leaves inoculated with the spore suspension and expanded outward. After 5 days, all macadamia leaves inoculated with the fungal spores began to wither, while controls remained asymptomatic (Fig. 1 H-I). D. hongkongensis was consistently re-isolated and purified from inoculated leaves and the identity was confirmed by morphological identification and molecular analysis, completed Koch's postulates. D. hongkongensis has been reported on peach (Zhang et al. 2021), grapevine trunk (Dissanayake et al. 2015) and Cunninghamia lanceolata (Liao et al. 2022). To our knowledge, this is the first report of D. hongkongensis causing leaf blight on macadamia in China. These findings provide a foundation for future research on the epidemiology and control of this newly emerging disease of macadamia.

6.
Int J Biol Macromol ; 270(Pt 2): 132338, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763237

ABSTRACT

Extracellular polymeric substances (EPSs) in excess sludge of wastewater treatment plants are valuable biopolymers that can act as recovery materials. However, effectively concentrating EPSs consumes a significant amount of energy. This study employed novel energy-saving pressure-free dead-end forward osmosis (DEFO) technology to concentrate various biopolymers, including EPSs and model biopolymers [sodium alginate (SA), bovine serum albumin (BSA), and a mixture of both (denoted as BSA-SA)]. The feasibility of the DEFO technology was proven and the largest concentration ratios for these biopolymers were 94.8 % for EPSs, 97.1 % for SA, 97.8 % for BSA, and 98.4 % for BSA-SA solutions. An evaluation model was proposed, incorporating the FO membrane's water permeability coefficient and the concentrated substances' osmotic resistance, to describe biopolymers' concentration properties. Irrespective of biopolymer type, the water permeability coefficient decreased with increasing osmotic pressure, remained constant with increasing feed solution (FS) concentration, increased with increasing crossing velocity in the draw side, and showed little dependence on draw salt type. In the EPS DEFO concentration process, osmotic resistance was minimally impacted by osmotic pressure, FS concentration, and crossing velocity, and monovalent metal salts were proposed as draw solutes. The interaction between reverse diffusion metal cations and EPSs affected the structure of the concentrated substances on the FO membrane, thus changing the osmotic resistance in the DEFO process. These findings offer insights into the efficient concentration of biopolymers using DEFO.


Subject(s)
Osmosis , Biopolymers/chemistry , Alginates/chemistry , Serum Albumin, Bovine/chemistry , Permeability , Osmotic Pressure , Water/chemistry , Cattle , Membranes, Artificial , Animals , Water Purification/methods
7.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612384

ABSTRACT

3-methyl-4-nitrophenol (PNMC), a well-known constituent of diesel exhaust particles and degradation products of insecticide fenitrothion, is a widely distributed environmental contaminant. PNMC is toxic to the female reproductive system; however, how it affects meiosis progression in oocytes is unknown. In this study, in vitro maturation of mouse oocytes was applied to investigate the deleterious effects of PNMC. We found that exposure to PNMC significantly compromised oocyte maturation. PNMC disturbed the spindle stability; specifically, it decreased the spindle density and increased the spindle length. The weakened spindle pole location of microtubule-severing enzyme Fignl1 may result in a defective spindle apparatus in PNMC-exposed oocytes. PNMC exposure induced significant mitochondrial dysfunction, including mitochondria distribution, ATP production, mitochondrial membrane potential, and ROS accumulation. The mRNA levels of the mitochondria-related genes were also significantly impaired. Finally, the above-mentioned alterations triggered early apoptosis in the oocytes. In conclusion, PNMC exposure affected oocyte maturation and quality through the regulation of spindle stability and mitochondrial function.


Subject(s)
Mitochondrial Diseases , Oocytes , Female , Animals , Mice , Cresols , DNA, Mitochondrial , Meiosis
8.
J Neurosci Methods ; 407: 110127, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38615721

ABSTRACT

BACKGROUND: Human induced pluripotent stem cell (hiPSC)- derived neurons offer the possibility of studying human-specific neuronal behaviors in physiologic and pathologic states in vitro. It is unclear whether cultured neurons can achieve the fundamental network behaviors required to process information in the brain. Investigating neuronal oscillations and their interactions, as occurs in cross-frequency coupling (CFC), addresses this question. NEW METHODS: We examined whether networks of two-dimensional (2D) cultured hiPSC-derived cortical neurons grown with hiPSC-derived astrocytes on microelectrode array plates recapitulate the CFC that is present in vivo. We employed the modulation index method for detecting phase-amplitude coupling (PAC) and used offline spike sorting to analyze the contribution of single neuron spiking to network behavior. RESULTS: We found that PAC is present, the degree of PAC is specific to network structure, and it is modulated by external stimulation with bicuculline administration. Modulation of PAC is not driven by single neurons, but by network-level interactions. COMPARISON WITH EXISTING METHODS: PAC has been demonstrated in multiple regions of the human cortex as well as in organoids. This is the first report of analysis demonstrating the presence of coupling in 2D cultures. CONCLUSION: CFC in the form of PAC analysis explores communication and integration between groups of neurons and dynamical changes across networks. In vitro PAC analysis has the potential to elucidate the underlying mechanisms as well as capture the effects of chemical, electrical, or ultrasound stimulation; providing insight into modulation of neural networks to treat nervous system disorders in vivo.


Subject(s)
Induced Pluripotent Stem Cells , Microelectrodes , Neurons , Humans , Neurons/physiology , Induced Pluripotent Stem Cells/physiology , Induced Pluripotent Stem Cells/cytology , Action Potentials/physiology , Cells, Cultured , Cerebral Cortex/physiology , Cerebral Cortex/cytology , Astrocytes/physiology , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation , Bicuculline/pharmacology , Nerve Net/physiology
9.
Nanomicro Lett ; 16(1): 169, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587615

ABSTRACT

With the continuous advancement of communication technology, the escalating demand for electromagnetic shielding interference (EMI) materials with multifunctional and wideband EMI performance has become urgent. Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest, but remain a huge challenge. Herein, we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose (HMN) by alternating vacuum-assisted filtration process. The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency (66.8 dB at Ka-band) and THz frequency (114.6 dB at 0.1-4.0 THz). Besides, the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz. Moreover, HMN composite films show remarkable photothermal conversion performance, which can reach 104.6 °C under 2.0 Sun and 235.4 °C under 0.8 W cm-2, respectively. The unique micro- and macro-structural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect. These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.

10.
BMC Oral Health ; 24(1): 418, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580938

ABSTRACT

Oral squamous cell carcinoma (OSCC) is the most common head and neck malignancy. The oncometabolites have been studied in OSCC, but the mechanism of metabolic reprogramming remains unclear. To identify the potential metabolic markers to distinguish malignant oral squamous cell carcinoma (OSCC) tissue from adjacent healthy tissue and study the mechanism of metabolic reprogramming in OSCC. We compared the metabolites between cancerous and paracancerous tissues of OSCC patients by 1HNMR analysis. We established OSCC derived cell lines and analyzed their difference of RNA expression by RNA sequencing. We investigated the metabolism of γ-aminobutyrate in OSCC derived cells by real time PCR and western blotting. Our data revealed that much more γ-aminobutyrate was produced in cancerous tissues of OSCC patients. The investigation based on OSCC derived cells showed that the increase of γ-aminobutyrate was promoted by the synthesis of glutamate beyond the mitochondria. In OSCC cancerous tissue derived cells, the glutamate was catalyzed to glutamine by glutamine synthetase (GLUL), and then the generated glutamine was metabolized to glutamate by glutaminase (GLS). Finally, the glutamate produced by glutamate-glutamine-glutamate cycle was converted to γ-aminobutyrate by glutamate decarboxylase 2 (GAD2). Our study is not only benefit for understanding the pathological mechanisms of OSCC, but also has application prospects for the diagnosis of OSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck , Mouth Neoplasms/pathology , Glutamine/genetics , Glutamine/metabolism , Metabolic Reprogramming , Glutamates/genetics , Glutamates/metabolism , Cell Line, Tumor
11.
Front Pediatr ; 12: 1345141, 2024.
Article in English | MEDLINE | ID: mdl-38434730

ABSTRACT

Background: Kawasaki disease (KD) is an important cause of acquired heart disease in children and adolescents worldwide. KD and infectious diseases can be easily confused when the clinical presentation is inadequate or atypical, leading to misdiagnosis or underdiagnosis of KD. In turn, misdiagnosis or underdiagnosis of KD can lead to delayed use of intravenous immunoglobulin (IVIG), increasing the risk of drug resistance and coronary artery lesions (CAL). Objectives: The purpose of this study was to develop a predictive model for identifying KD and infectious diseases in children in the hope of helping pediatricians develop timely and accurate treatment plans. Methods: The data Patients diagnosed with KD from January 2018 to July 2022 in Shenzhen Longgang District Maternity & Child Healthcare Hospital, and children diagnosed with infectious diseases in the same period will be included in this study as controls. We collected demographic information, clinical presentation, and laboratory data on KD before receiving IVIG treatment. All statistical analyses were performed using R-4.2.1 (https://www.rproject.org/). Logistic regression and Least Absolute Shrinkage with Selection Operator (LASSO) regression analyses were used to build predictive models. Calibration curves and C-index were used to validate the accuracy of the prediction models. Results: A total of 1,377 children were enrolled in this study, 187 patients with KD were included in the KD group and 1,190 children with infectious diseases were included in the infected group. We identified 15 variables as independent risk factors for KD by LASSO analysis. Then by logistic regression we identified 7 variables for the construction of nomogram including white blood cell (WBC), Monocyte (MO), erythrocyte sedimentation rate (ESR), alanine transaminase (ALT), albumin (ALB), C-reactive protein to procalcitonin ratio (CPR) and C-reactive protein to lymphocyte ratio (CLR). The calibration curve and C-index of 0.969 (95% confidence interval: 0.960-0.978) validated the model accuracy. Conclusion: Our predictive model can be used to discriminate KD from infectious diseases. Using this predictive model, it may be possible to provide an early determination of the use of IVIG and the application of antibiotics as soon as possible.

12.
bioRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496540

ABSTRACT

Glioblastoma (GBM), a universally fatal brain cancer, infiltrates the brain and can be synaptically innervated by neurons, which drives tumor progression 1-6 . Synaptic inputs onto GBM cells identified so far are largely short-range and glutamatergic 7-9 . The extent of integration of GBM cells into brain-wide neuronal circuitry is not well understood. Here we applied a rabies virus-mediated retrograde monosynaptic tracing approach 10-12 to systematically investigate circuit integration of human GBM organoids transplanted into adult mice. We found that GBM cells from multiple patients rapidly integrated into brain-wide neuronal circuits and exhibited diverse local and long-range connectivity. Beyond glutamatergic inputs, we identified a variety of neuromodulatory inputs across the brain, including cholinergic inputs from the basal forebrain. Acute acetylcholine stimulation induced sustained calcium oscillations and long-lasting transcriptional reprogramming of GBM cells into a more invasive state via the metabotropic CHRM3 receptor. CHRM3 downregulation suppressed GBM cell invasion, proliferation, and survival in vitro and in vivo. Together, these results reveal the capacity of human GBM cells to rapidly and robustly integrate into anatomically and molecularly diverse neuronal circuitry in the adult brain and support a model wherein rapid synapse formation onto GBM cells and transient activation of upstream neurons may lead to a long-lasting increase in fitness to promote tumor infiltration and progression.

13.
bioRxiv ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38496599

ABSTRACT

By largely unknown mechanism(s), SARS-CoV-2 hijacks the host translation apparatus to promote COVID-19 pathogenesis. We report that the histone methyltransferase G9a noncanonically regulates viral hijacking of the translation machinery to bring about COVID-19 symptoms of hyperinflammation, lymphopenia, and blood coagulation. Chemoproteomic analysis of COVID-19 patient peripheral mononuclear blood cells (PBMC) identified enhanced interactions between SARS-CoV-2-upregulated G9a and distinct translation regulators, particularly the N 6 -methyladenosine (m 6 A) RNA methylase METTL3. These interactions with translation regulators implicated G9a in translational regulation of COVID-19. Inhibition of G9a activity suppressed SARS-CoV-2 replication in human alveolar epithelial cells. Accordingly, multi-omics analysis of the same alveolar cells identified SARS-CoV-2-induced changes at the transcriptional, m 6 A-epitranscriptional, translational, and post-translational (phosphorylation or secretion) levels that were reversed by inhibitor treatment. As suggested by the aforesaid chemoproteomic analysis, these multi-omics-correlated changes revealed a G9a-regulated translational mechanism of COVID-19 pathogenesis in which G9a directs translation of viral and host proteins associated with SARS-CoV-2 replication and with dysregulation of host response. Comparison of proteomic analyses of G9a inhibitor-treated, SARS-CoV-2 infected cells, or ex vivo culture of patient PBMCs, with COVID-19 patient data revealed that G9a inhibition reversed the patient proteomic landscape that correlated with COVID-19 pathology/symptoms. These data also indicated that the G9a-regulated, inhibitor-reversed, translational mechanism outperformed G9a-transcriptional suppression to ultimately determine COVID-19 pathogenesis and to define the inhibitor action, from which biomarkers of serve symptom vulnerability were mechanistically derived. This cell line-to-patient conservation of G9a-translated, COVID-19 proteome suggests that G9a inhibitors can be used to treat patients with COVID-19, particularly patients with long-lasting COVID-19 sequelae.

14.
Waste Manag Res ; : 734242X241237107, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497604

ABSTRACT

Removing water-soluble chlorides (WSCs) through water extraction is a common pretreatment technology for recycling municipal solid waste incineration (MSWI) fly ash (FA). However, the extracted solution often contains heavy metals, the concentrations of which exceed standards for effluent. This study aims to investigate the adsorption of heavy metals by palygorskite in water-extracted solution and explore the feasibility of stabilizing heavy metals through comilling palygorskite-adsorbed heavy metals (PAHMs) with water-extracted fly ash (WFA). The experimental parameters include: two-stage water extraction with a liquid-to-solid ratio of 5, adding 0, 0.125, 0.25, 0.5, 1, 2 or 3 g of palygorskite to 100 mL of water-extracted solution, and comilling the mixture of PAHMs and WFA for 0, 0.5, 1, 2, 4, 8, 12, 24 or 96 hours. The experimental results revealed that 3 g of palygorskite in 100 mL of extracted solution could absorb Pb, Cd, Cr, Cu and Zn, meeting the effluent standards. The total amount of Pb, Cd, Cr, Cu and Zn removal rate reached 99.7%. Moreover, 98.44% of the WSCs were not adsorbed, the water extraction process for removing WSCs was not compromised. After the comilling of PAHMs and WFA, the distribution of the heavy metals in the milled blended powder was greater than 99.44%; moreover, toxicity characteristic leaching procedure concentrations were determined to conform to regulatory standards, and the sequential extraction procedure revealed that the heavy metals tended to be in stable fractions. This achieves the goal of preventing secondary pollution from heavy metals during the MSWI FA recycling process.

15.
Nat Med ; 30(5): 1320-1329, 2024 May.
Article in English | MEDLINE | ID: mdl-38480922

ABSTRACT

Recurrent glioblastoma (rGBM) remains a major unmet medical need, with a median overall survival of less than 1 year. Here we report the first six patients with rGBM treated in a phase 1 trial of intrathecally delivered bivalent chimeric antigen receptor (CAR) T cells targeting epidermal growth factor receptor (EGFR) and interleukin-13 receptor alpha 2 (IL13Rα2). The study's primary endpoints were safety and determination of the maximum tolerated dose. Secondary endpoints reported in this interim analysis include the frequency of manufacturing failures and objective radiographic response (ORR) according to modified Response Assessment in Neuro-Oncology criteria. All six patients had progressive, multifocal disease at the time of treatment. In both dose level 1 (1 ×107 cells; n = 3) and dose level 2 (2.5 × 107 cells; n = 3), administration of CART-EGFR-IL13Rα2 cells was associated with early-onset neurotoxicity, most consistent with immune effector cell-associated neurotoxicity syndrome (ICANS), and managed with high-dose dexamethasone and anakinra (anti-IL1R). One patient in dose level 2 experienced a dose-limiting toxicity (grade 3 anorexia, generalized muscle weakness and fatigue). Reductions in enhancement and tumor size at early magnetic resonance imaging timepoints were observed in all six patients; however, none met criteria for ORR. In exploratory endpoint analyses, substantial CAR T cell abundance and cytokine release in the cerebrospinal fluid were detected in all six patients. Taken together, these first-in-human data demonstrate the preliminary safety and bioactivity of CART-EGFR-IL13Rα2 cells in rGBM. An encouraging early efficacy signal was also detected and requires confirmation with additional patients and longer follow-up time. ClinicalTrials.gov identifier: NCT05168423 .


Subject(s)
ErbB Receptors , Glioblastoma , Immunotherapy, Adoptive , Interleukin-13 Receptor alpha2 Subunit , Receptors, Chimeric Antigen , Humans , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Interleukin-13 Receptor alpha2 Subunit/immunology , Middle Aged , Male , Receptors, Chimeric Antigen/immunology , Female , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/pathology , Adult , Aged , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Injections, Spinal , Maximum Tolerated Dose
16.
Nature ; 628(8007): 391-399, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408487

ABSTRACT

The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles. Recently, models of neurodevelopment based on human pluripotent stem cells, including neural organoids1-5 and bioengineered neural tube development models6-10, have emerged. However, such models fail to recapitulate neural patterning along both rostral-caudal and dorsal-ventral axes in a three-dimensional tubular geometry, a hallmark of neural tube development. Here we report a human pluripotent stem cell-based, microfluidic neural tube-like structure, the development of which recapitulates several crucial aspects of neural patterning in brain and spinal cord regions and along rostral-caudal and dorsal-ventral axes. This structure was utilized for studying neuronal lineage development, which revealed pre-patterning of axial identities of neural crest progenitors and functional roles of neuromesodermal progenitors and the caudal gene CDX2 in spinal cord and trunk neural crest development. We further developed dorsal-ventral patterned microfluidic forebrain-like structures with spatially segregated dorsal and ventral regions and layered apicobasal cellular organizations that mimic development of the human forebrain pallium and subpallium, respectively. Together, these microfluidics-based neurodevelopment models provide three-dimensional lumenal tissue architectures with in vivo-like spatiotemporal cell differentiation and organization, which will facilitate the study of human neurodevelopment and disease.


Subject(s)
Body Patterning , Microfluidics , Neural Tube , Humans , Cell Culture Techniques, Three Dimensional , Cell Differentiation , Neural Crest/cytology , Neural Crest/embryology , Neural Tube/cytology , Neural Tube/embryology , Pluripotent Stem Cells/cytology , Prosencephalon/cytology , Prosencephalon/embryology , Spinal Cord/cytology , Spinal Cord/embryology
17.
Adv Sci (Weinh) ; 11(14): e2309289, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38326078

ABSTRACT

Organoids are becoming increasingly relevant in biology and medicine for their physiological complexity and accuracy in modeling human disease. To fully assess their biological profile while preserving their spatial information, spatiotemporal imaging tools are warranted. While previously developed imaging techniques, such as four-dimensional (4D) live imaging and light-sheet imaging have yielded important clinical insights, these technologies lack the combination of cyclic and multiplexed analysis. To address these challenges, bioorthogonal click chemistry is applied to display the first demonstration of multiplexed cyclic imaging of live and fixed patient-derived glioblastoma tumor organoids. This technology exploits bioorthogonal click chemistry to quench fluorescent signals from the surface and intracellular of labeled cells across multiple cycles, allowing for more accurate and efficient molecular profiling of their complex phenotypes. Herein, the versatility of this technology is demonstrated for the screening of glioblastoma markers in patient-derived human glioblastoma organoids while conserving their viability. It is anticipated that the findings and applications of this work can be broadly translated into investigating physiological developments in other organoid systems.


Subject(s)
Glioblastoma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Diagnostic Imaging , Organoids/pathology
18.
Article in English | MEDLINE | ID: mdl-38240641

ABSTRACT

A Gram-stain-negative, catalase-positive and oxidase-positive, nonmotile, aerobic, light yellow, spherical-shaped bacterial strain with no flagella, designated strain YIM 152171T, was isolated from sediment of the South China Sea. Colonies were smooth and convex, light yellow and circular, and 1.0-1.5×1.0-1.5 µm in cell diameter after 7 days of incubation at 28°C on YIM38 media supplemented with sea salt. Colonies could grow at 20-45°C (optimum 28-35°C) and pH 6.0-11.0 (optimum, pH 7.0-9.0), and they could proliferate in the salinity range of 0-6.0 % (w/v) NaCl. The major cellular fatty acids were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), C18 : 1 ω7c 11-methyl, C16 : 0, C16 : 1 ω11c, C16 : 1 ω5c, C17 : 1 ω6c and C18 : 1 ω5c. The respiratory quinone was ubiquinone 10, and the polar lipid profile included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol mannoside, one unidentified phospholipid and one unidentified aminolipid. Phylogenetic analyses based on the 16S rRNA gene sequences placed strain YIM 152171T within the order Rhodospirillales in a distinct lineage that also included the genus Geminicoccus. The 16S rRNA gene sequence similarities of YIM 152171T to those of Arboricoccus pini, Geminicoccus roseus and Constrictibacter antarcticus were 92.17, 89.25 and 88.91 %, respectively. The assembled draft genome of strain YIM 152171T had 136 contigs with an N50 value of 134704 nt, a total length of 3 001 346 bp and a G+C content of 70.27 mol%. The phylogenetic, phenotypic and chemotaxonomic data showed that strain YIM 152171T (=MCCC 1K08488T=KCTC 92884T) represents a type of novel species and genus for which we propose the name Marinimicrococcus gen. nov., sp. nov.


Subject(s)
Fatty Acids , Rhodospirillales , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Sequence Analysis, DNA , Geologic Sediments/microbiology , Phospholipids/chemistry , China
19.
Small ; 20(3): e2304914, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37679061

ABSTRACT

Robust, ultrathin, and environmental-friendliness papers that synergize high-efficiency electromagnetic interference (EMI) shielding, personal thermal management, and wearable heaters are essential for next-generation smart wearable devices. Herein, MXene nanocomposite paper with a nacre-like structure for EMI shielding and electrothermal/photothermal conversion is fabricated by vacuum filtration of Ti3 C2 Tx MXene and modified sawdust. The hydrogen bonding and highly oriented structure enhance the mechanical properties of the modified sawdust/MXene composite paper (SM paper). The SM paper with 50 wt% MXene content shows a strength of 23 MPa and a toughness of 13 MJ·M-3 . The conductivity of the SM paper is 10 195 S·m-1 , resulting in an EMI shielding effectiveness (SE) of 67.9 dB and a specific SE value (SSE/t) of 8486 dB·cm2 ·g-1 . In addition, the SM paper exhibits excellent thermal management performance including high light/electro-to-thermal conversion, rapid Joule heating and photothermal response, and sufficient heating stability. Notably, the SM paper exhibits low infrared emissivity and distinguished infrared stealth performance, camouflaging a high-temperature heater surface of 147-81 °C. The SM-based e-skin achieves visualization of Joule heating and realizes human motions monitoring. This work presents a new strategy for designing MXene-based wearable devices with great EMI shielding, artificial intelligence, and thermal management applications.

20.
Nat Rev Genet ; 25(1): 26-45, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37507490

ABSTRACT

Brain development in humans is achieved through precise spatiotemporal genetic control, the mechanisms of which remain largely elusive. Recently, integration of technological advances in human stem cell-based modelling with genome editing has emerged as a powerful platform to establish causative links between genotypes and phenotypes directly in the human system. Here, we review our current knowledge of complex genetic regulation of each key step of human brain development through the lens of evolutionary specialization and neurodevelopmental disorders and highlight the use of human stem cell-derived 2D cultures and 3D brain organoids to investigate human-enriched features and disease mechanisms. We also discuss opportunities and challenges of integrating new technologies to reveal the genetic architecture of human brain development and disorders.


Subject(s)
Brain , Induced Pluripotent Stem Cells , Humans , Biological Evolution
SELECTION OF CITATIONS
SEARCH DETAIL
...