Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21261312

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by SARS-CoV-2, varies with regard to symptoms and mortality rates among populations. Humoral immunity plays critical roles in SARS-CoV-2 infection and recovery from COVID-19. However, differences in immune responses and clinical features among COVID-19 patients remain largely unknown. Here, we report a database for COVID-19-specific IgG/IgM immune responses and clinical parameters (COVID-ONE humoral immune). COVID-ONE humoral immunity is based on a dataset that contains the IgG/IgM responses to 21 of 28 known SARS-CoV-2 proteins and 197 spike protein peptides against 2,360 COVID-19 samples collected from 783 patients. In addition, 96 clinical parameters for the 2,360 samples and information for the 783 patients are integrated into the database. Furthermore, COVID-ONE humoral immune provides a dashboard for defining samples and a one-click analysis pipeline for a single group or paired groups. A set of samples of interest is easily defined by adjusting the scale bars of a variety of parameters. After the "START" button is clicked, one can readily obtain a comprehensive analysis report for further interpretation. COVID-ONE-humoral immune is freely available at www.COVID-ONE.cn.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-454261

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by SARS-CoV-2, varies with regard to symptoms and mortality rates among populations. Humoral immunity plays critical roles in SARS-CoV-2 infection and recovery from COVID-19. However, differences in immune responses and clinical features among COVID-19 patients remain largely unknown. Here, we report a database for COVID-19-specific IgG/IgM immune responses and clinical parameters (COVID-ONE humoral immune). COVID-ONE humoral immunity is based on a dataset that contains the IgG/IgM responses to 21 of 28 known SARS-CoV-2 proteins and 197 spike protein peptides against 2,360 COVID-19 samples collected from 783 patients. In addition, 96 clinical parameters for the 2,360 samples and information for the 783 patients are integrated into the database. Furthermore, COVID-ONE humoral immune provides a dashboard for defining samples and a one-click analysis pipeline for a single group or paired groups. A set of samples of interest is easily defined by adjusting the scale bars of a variety of parameters. After the "START" button is clicked, one can readily obtain a comprehensive analysis report for further interpretation. COVID-ONE-humoral immune is freely available at www.COVID-ONE.cn.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20190496

ABSTRACT

SARS-CoV-2 specific IgG responses play critical roles for patients to recover from COVID-19, in-depth dissecting of the IgG responses on systems level is of great interest. Herein, we adopted a newly developed high-throughput epitope mapping technology (AbMap), analyzed 55 COVID-19 convalescent sera and 226 antibody samples enriched by specific proteins or peptides from these sera. We revealed three areas that are rich of IgG epitopes, two are on Spike protein but outside of RBD, and one is on Nucleocapsid protein. We identified 29 significant epitopes on Spike protein, from two of these significant epitopes, two critical epitope residues were found, i. e., D936 and P1263, which are highly related to the infectivity of SARS-CoV-2 In summary, we provided the first global map of IgG binding epitopes for SARS-CoV-2 at single amino acid resolution. This map will facilitate the precise development of therapeutic antibodies and vaccines. HIGHLIGHTSO_LIA map of SARS-CoV-2 specific IgG binding epitopes at single amino acid resolution C_LIO_LITwo areas outside of RBD that are rich of significant epitopes were identified C_LIO_LIOne area rich of significant epitopes was determined on Nucleocapsid protein C_LIO_LITwo critical epitope residues (D936 and P1263) on Spike protein are highly related to the infectivity of SARS-CoV-2 C_LI

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20125096

ABSTRACT

SARS-CoV-2 outbreak is a world-wide pandemic. The Spike protein plays central role in cell entry of the virus, and triggers significant immuno-response. Our understanding of the immune-response against S protein is still very limited. Herein, we constructed a peptide microarray and analyzed 55 convalescent sera, three areas with rich linear epitopes were identified. Potent neutralizing antibodies enriched from sera by 3 peptides, which do not belong to RBD were revealed.

SELECTION OF CITATIONS
SEARCH DETAIL
...