Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 32(1): 11-20, 2018 01.
Article in English | MEDLINE | ID: mdl-28663574

ABSTRACT

The genomes of myeloid malignancies are characterized by epigenomic abnormalities. Heterozygous, inactivating ten-eleven translocation 2 (TET2) mutations and neomorphic isocitrate dehydrogenase (IDH) mutations are recurrent and mutually exclusive in acute myeloid leukaemia genomes. Ascorbic acid (vitamin C) has been shown to stimulate the catalytic activity of TET2 in vitro and thus we sought to explore its effect in a leukaemic model expressing IDH1R132H. Vitamin C treatment induced an IDH1R132H-dependent reduction in cell proliferation and an increase in expression of genes involved in leukocyte differentiation. Vitamin C induced differentially methylated regions that displayed a significant overlap with enhancers implicated in myeloid differentiation and were enriched in sequence elements for the haematopoietic transcription factors CEBPß, HIF1α, RUNX1 and PU.1. Chromatin immunoprecipitation sequencing of PU.1 and RUNX1 revealed a significant loss of PU.1 and increase of RUNX1-bound DNA elements accompanied by their demethylation following vitamin C treatment. In addition, vitamin C induced an increase in H3K27ac flanking sites bound by RUNX1. On the basis of these data we propose a model of vitamin C-induced epigenetic remodelling of transcription factor-binding sites driving differentiation in a leukaemic model.


Subject(s)
Ascorbic Acid/pharmacology , Epigenesis, Genetic/drug effects , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , DNA-Binding Proteins/genetics , Epigenomics/methods , Mice , Mice, Inbred C57BL , Transcription Factors/genetics
2.
Leukemia ; 29(10): 2086-97, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26017032

ABSTRACT

Acute myeloid leukemia (AML) occurs when multiple genetic aberrations alter white blood cell development, leading to hyperproliferation and arrest of cell differentiation. Pertinent animal models link in vitro studies with the use of new agents in clinical trials. We generated a transgenic zebrafish expressing human NUP98-HOXA9 (NHA9), a fusion oncogene found in high-risk AML. Embryos developed a preleukemic state with anemia and myeloid cell expansion, and adult fish developed a myeloproliferative neoplasm (MPN). We leveraged this model to show that NHA9 increases the number of hematopoietic stem cells, and that oncogenic function of NHA9 depends on downstream activation of meis1, the PTGS/COX pathway and genome hypermethylation through the DNA methyltransferase, dnmt1. We restored normal hematopoiesis in NHA9 embryos with knockdown of meis1 or dnmt1, as well as pharmacologic treatment with DNA (cytosine-5)-methyltransferase (DNMT) inhibitors or cyclo-oxygenase (COX) inhibitors. DNMT inhibitors reduced genome methylation to near normal levels. Strikingly, we discovered synergy when we combined sub-monotherapeutic doses of a histone deacetylase inhibitor plus either a DNMT inhibitor or COX inhibitor to block the effects of NHA9 on zebrafish blood development. Our work proposes novel drug targets in NHA9-induced myeloid disease, and suggests rational therapies by combining minimal doses of known bioactive compounds.


Subject(s)
Embryo, Nonmammalian/drug effects , Epigenesis, Genetic/drug effects , Hematopoiesis/physiology , Histone Deacetylase Inhibitors/therapeutic use , Homeodomain Proteins/genetics , Leukemia, Myeloid, Acute/prevention & control , Myeloproliferative Disorders/prevention & control , Nuclear Pore Complex Proteins/genetics , Oncogene Proteins, Fusion/genetics , Adult , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cells, Cultured , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Gene Expression Profiling , Hematopoiesis/drug effects , Humans , In Situ Hybridization , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/pathology , Myeloproliferative Disorders/etiology , Myeloproliferative Disorders/pathology , Oligonucleotide Array Sequence Analysis , Phenotype , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Transgenes/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...