Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 23(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35409040

ABSTRACT

This is the first study aiming to develop a method for the long-term visualization of living nigrostriatal dopaminergic neurons using 1-(2-(bis(4-fluorophenyl)methoxy)ethyl)-4-(3-phenylpropyl)piperazine-BODIPY (GBR-BP), the original fluorescent substance, which is a derivative of GBR-12909, a dopamine uptake inhibitor. This method is based on the authors' hypothesis about the possibility of specifically internalizing into dopaminergic neurons substances with a high affinity for the dopamine transporter (DAT). Using a culture of mouse embryonic mesencephalic and LUHMES cells (human embryonic mesencephalic cells), as well as slices of the substantia nigra of adult mice, we have obtained evidence that GBR-BP is internalized specifically into dopaminergic neurons in association with DAT via a clathrin-dependent mechanism. Moreover, GBR-BP has been proven to be nontoxic. As we have shown in a primary culture of mouse metencephalon, GBR-BP is also specifically internalized into some noradrenergic and serotonergic neurons, but is not delivered to nonmonoaminergic neurons. Our data hold great promise for visualization of dopaminergic neurons in a mixed cell population to study their functioning, and can also be considered a new approach for the development of targeted drug delivery to dopaminergic neurons in pathology, including Parkinson's disease.


Subject(s)
Dopaminergic Neurons , Membrane Glycoproteins , Animals , Dopamine Uptake Inhibitors/pharmacology , Dopaminergic Neurons/metabolism , Membrane Glycoproteins/metabolism , Mesencephalon/metabolism , Mice , Nerve Tissue Proteins
2.
Open Access Maced J Med Sci ; 6(11): 1972-1976, 2018 Nov 25.
Article in English | MEDLINE | ID: mdl-30559845

ABSTRACT

BACKGROUND: The use of intramedullary elastic nailing is a method of choice for prevention of complications in children with osteogenesis imperfecta. However, the morphology of the growing long bones in the conditions created was not investigated. AIM: The purpose of our experiment was to study the impact of elastic intramedullary nailing on the histostructure of long bones in their physiological growth. METHODS: Six mongrel dogs underwent intramedullary elastic transphyseal nailing of the intact tibia with two titanium wires. Six months after nailing, a light-optical microscopic and histomorphometric study of the operated and contralateral tibiae was performed. RESULTS: It was found that asymmetric lesion of the distal physis induces a decrease in the height of the distal epimetaphysis. Adaptive changes in the hyaline cartilage of both articular ends were revealed corresponding to the initial stage of chondropathy. Intramedullary nailing promotes an increase in the thickness of the compact bone and the volume of the trabecular bone. CONCLUSIONS: Elastic transphyseal nailing of the intact tibia has a shaping effect which is expressed by an increase in the volume of spongy and compact bone, adaptive changes in the hyaline cartilage. Asymmetric damage to growth zones should be avoided to prevent deformities.

3.
Mol Neurobiol ; 55(4): 2991-3006, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28456940

ABSTRACT

Parkinson's disease (PD) is characterized by the appearance of motor symptoms many years after the onset of neurodegeneration, which explains low efficiency of therapy. Therefore, one of the priorities in neurology is to develop an early diagnosis and preventive treatment of PD, based on knowledge of molecular mechanisms of neurodegeneration and neuroplasticity in the nigrostriatal system. However, due to inability to diagnose PD at preclinical stage, research and development must be performed in animal models by comparing the nigrostriatal system in the models of asymptomatic and early symptomatic stages of PD. In this study, we showed that despite the progressive loss of neurons in the substantia nigra at the presymptomatic and symptomatic stage, almost no change was observed in the main functional characteristics of this brain region, including dopamine (DA) uptake and release, dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) expression, and activity of MAO-A and MAO-B. In the striatum of presymptomatic mice, some parameters (DA release and uptake, MAO-A activity) remained compensatory unchanged or compensatory decreased (MAO-B gene expression and activity), while others-a reduction in DA levels in tissue and extracellular space and in VMAT2 and DAT expression-manifest the functional failure. In symptomatic mice, only a few parameters (spontaneous DA release and uptake, MAO-B gene expression and activity) remained at the same level as at presymptomatic stage, while most parameters (DA level in tissue and extracellular space, DA-stimulated release, VMAT2 and DAT contents), decreased, showing decompensation, which was enhanced by increasing MAO-A activity. Thus, this study provides a comprehensive assessment of the molecular mechanisms of neuroplasticity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine models of preclinical and clinical stages of PD, which could potentially serve as a powerful tool for translational medicine.


Subject(s)
Parkinson Disease/pathology , Translational Research, Biomedical , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Male , Mice, Inbred C57BL , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Parkinson Disease/genetics , Potassium/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Substantia Nigra/metabolism , Substantia Nigra/pathology , Vesicular Monoamine Transport Proteins/genetics , Vesicular Monoamine Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL