Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Foodborne Pathog Dis ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38452173

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) are an important cause of bacterial enteric infection. STEC strains cause serious human gastrointestinal disease, which may result in life-threatening complications such as hemolytic uremic syndrome. They have the potential to impact public health due to diagnostic challenges of identifying non-O157 strains in the clinical laboratory. The Wadsworth Center (WC), the public health laboratory of the New York State Department of Health, has isolated and identified non-O157 STEC for decades. A shift from initially available enzyme immunoassay testing to culture-independent diagnostic tests (CIDTs) has increased the uptake of testing at clinical microbiology laboratories. This testing change has resulted in an increased number of specimen submissions to WC. During a 12-year period between 2011 and 2022, WC received 5037 broths and/or stool specimens for STEC confirmation from clinical microbiology laboratories. Of these, 3992 were positive for Shiga toxin genes (stx1 and/or stx2) by real-time PCR. Furthermore, culture methods were utilized to isolate, identify, and characterize 2925 STEC from these primary specimens. Notably, WC observed a >200% increase in the number of STEC specimens received in 2021-2022 compared with 2011-2012 and an 18% increase in the number of non-O157 STEC identified using the same methodologies. During the past decade, the WC testing algorithm has been updated to manage the increase in specimens received, while also navigating the novel COVID-19 pandemic, which took priority over other testing for a period of time. This report summarizes updated methods for confirmation, surveillance, and outbreak detection of STEC and describes findings that may be related to our algorithm updates and the increased use of CIDTs, which is starting to elucidate the true incidence of non-O157 STEC.

2.
Foodborne Pathog Dis ; 20(6): 230-236, 2023 06.
Article in English | MEDLINE | ID: mdl-37335914

ABSTRACT

Defining investigation-worthy genomic clusters among strains of Salmonella Enteritidis is challenging because of their highly clonal nature. We investigated a cluster identified by core genome multilocus sequence typing (cgMLST) consisting of 265 isolates with isolation dates spanning two and a half years. This cluster experienced chaining, growing to a range of 14 alleles. The volume of isolates and broad allele range of this cluster made it difficult to ascertain whether it represented a common-source outbreak. We explored laboratory-based methods to subdivide and refine this cluster. These methods included using cgMLST with a narrower allele range, whole genome multilocus sequence typing (wgMLST) and high-quality single-nucleotide polymorphism (hqSNP) analysis. At each analysis level, epidemiologists retroactively reviewed exposures, geography, and temporality for potential commonalities. Lowering the threshold to 0 alleles using cgMLST proved an effective method to refine this analysis, resulting in this large cluster being subdivided into 34 smaller clusters. Additional analysis by wgMLST and hqSNP provided enhanced cluster resolution, with the majority of clusters being further refined. These analysis methods combined with more stringent allele thresholds and layering of epidemiologic data proved useful in helping to subdivide this large cluster into actionable subclusters.


Subject(s)
Salmonella Infections , Salmonella enteritidis , New York/epidemiology , Humans , Salmonella enteritidis/classification , Salmonella enteritidis/genetics , Salmonella Infections/epidemiology , Salmonella Infections/microbiology , Multilocus Sequence Typing , Polymorphism, Single Nucleotide
3.
Front Microbiol ; 10: 144, 2019.
Article in English | MEDLINE | ID: mdl-30809204

ABSTRACT

The Bacillus cereus group comprises multiple species capable of causing emetic or diarrheal foodborne illness. Despite being responsible for tens of thousands of illnesses each year in the U.S. alone, whole-genome sequencing (WGS) is not yet routinely employed to characterize B. cereus group isolates from foodborne outbreaks. Here, we describe the first WGS-based characterization of isolates linked to an outbreak caused by members of the B. cereus group. In conjunction with a 2016 outbreak traced to a supplier of refried beans served by a fast food restaurant chain in upstate New York, a total of 33 B. cereus group isolates were obtained from human cases (n = 7) and food samples (n = 26). Emetic (n = 30) and diarrheal (n = 3) isolates were most closely related to B. paranthracis (group III) and B. cereus sensu stricto (group IV), respectively. WGS indicated that the 30 emetic isolates (24 and 6 from food and humans, respectively) were closely related and formed a well-supported clade distinct from publicly available emetic group III genomes with an identical sequence type (ST 26). The 30 emetic group III isolates from this outbreak differed from each other by a mean of 8.3 to 11.9 core single nucleotide polymorphisms (SNPs), while differing from publicly available emetic group III ST 26 B. cereus group genomes by a mean of 301.7-528.0 core SNPs, depending on the SNP calling methodology used. Using a WST-1 cell proliferation assay, the strains isolated from this outbreak had only mild detrimental effects on HeLa cell metabolic activity compared to reference diarrheal strain B. cereus ATCC 14579. We hypothesize that the outbreak was a single source outbreak caused by emetic group III B. cereus belonging to the B. paranthracis species, although food samples were not tested for presence of the emetic toxin cereulide. In addition to showcasing how WGS can be used to characterize B. cereus group strains linked to a foodborne outbreak, we also discuss potential microbiological and epidemiological challenges presented by B. cereus group outbreaks, and we offer recommendations for analyzing WGS data from the isolates associated with them.

4.
Int J Syst Evol Microbiol ; 67(11): 4304-4310, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28933320

ABSTRACT

Three independent isolates of Gram-reaction-negative cocci collected from two New York State patients and a dog's mouth in California were subjected to a polyphasic analysis. The 16S rRNA gene sequence similarity among these isolates is 99.66 to 99.86 %. The closest species with a validly published name is Neisseria zoodegmatis (98.7 % 16S rRNA gene sequence similarity) with six additional species of the genus Neisseria with greater than 97 % similarity. Average nucleotide identity (ANI) and genome-to-genome distance calculator (GGDC 2.0) analysis on whole genome sequence data support the three novel isolates as being from a single species that is distinct from all other closely related species of the genus Neisseria. Phylogenetic analysis of 16S rRNA gene sequences and ribosomal multilocus sequence typing (rMLST) indicate the novel species belongs in the genus Neisseria. This assignment is further supported by the predominant cellular fatty acids composition of C16 : 0, summed feature 3 (C16 : 1ω7c/C15 : 0iso 2-OH), and C18 : 1ω7c, and phenotypic characters. The name Neisseria dumasiana sp. nov. is proposed, and the type strain is 93087T (=DSM 104677T=LMG 30012 T).


Subject(s)
Dogs/microbiology , Neisseria/classification , Phylogeny , Sputum/microbiology , Animals , Bacterial Typing Techniques , Base Composition , California , DNA, Bacterial/genetics , Fatty Acids/chemistry , Humans , Mouth/microbiology , Neisseria/genetics , Neisseria/isolation & purification , New York , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
5.
Int J Syst Evol Microbiol ; 65(Pt 6): 1877-1882, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25792366

ABSTRACT

Eight independent isolates of a Gram-reaction-negative, non-motile rod, were recovered from clinical specimens of New York State patients between the years 2005 and 2013. Four of these isolates were characterized in a taxonomic study using a polyphasic approach that involved phenotypic, phylogenetic and genotypic methodologies. Based on 16S rRNA gene sequence similarity and phylogenetic analysis, the closest relative type strain of the isolates is Paracoccus sphaerophysae HAMBI 3106T (97.7  % 16S rRNA gene sequence similarity). Among the four isolates, the 16S rRNA gene sequence similarity is 100 %. In silico genomic comparisons, including average nucleotide identity (ANI) and the genome-to-genome distance calculator (GGDC), were used as an alternative to DNA-DNA hybridization in this study to support designation of the four isolates as a novel species of the genus Paracoccus. Mass spectrometry profiles were also obtained for the novel isolates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The predominant cellular fatty acids of the novel isolates were C18 : 1ω7c and C18 : 0. Biochemical analysis and morphological characteristics further contribute to designation of the four isolates as a novel species of the genus Paracoccus, for which the name Paracoccus sanguinis sp. nov. is proposed. The type strain is 05503T( = DSM 29303T = LMG 28451T).


Subject(s)
Paracoccus/classification , Phylogeny , Aged , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Female , Humans , Male , Middle Aged , Molecular Sequence Data , New York , Nucleic Acid Hybridization , Paracoccus/genetics , Paracoccus/isolation & purification , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
6.
Foodborne Pathog Dis ; 9(11): 1028-36, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23009170

ABSTRACT

Non-O157 Shiga toxin-producing Escherichia coli (STEC) are emerging pathogens with the potential to cause serious illness and impact public health due to diagnostic challenges. Between 2005 and 2010, the Wadsworth Center (WC), the public health laboratory of the New York State (NYS) Department of Health, requested that Shiga toxin enzyme immunoassay (EIA)-positive stool enrichment broths and/or stool specimens be submitted by clinical and commercial reference laboratories testing NYS patient specimens. A total of 798 EIA-positive specimens were received for confirmation and serotyping, and additionally a subset of STEC was assessed for the presence of six virulence genes (stx1, stx2, eaeA, hlyA, nleA, and nleB) by real-time polymerase chain reaction. We confirmed 591 specimens as STEC, 164 (28%) as O157 STEC, and 427 (72%) as non-O157 STEC. Of the non-O157 STEC serogroups identified, over 70% were O103, O26, O111, O45, O121, or O145. During this time period, WC identified and characterized a total of 1282 STEC received as E. coli isolates, stool specimens, or EIA broths. Overall, the STEC testing identified 59% as O157 STEC and 41% as non-O157 STEC; however, out of 600 isolates submitted to the WC as E. coli cultures, 543 (90%) were identified as O157 STEC. This report summarizes a 6-year study utilizing enhanced STEC testing that resulted in increased identification and characterization of non-O157 STEC in NYS. Continued utilization of enhanced STEC testing may lead to effective and timely outbreak response and improve monitoring of trends in STEC disease epidemiology.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Shiga Toxin/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification , Algorithms , DNA, Bacterial/genetics , Escherichia coli Infections/embryology , Feces/microbiology , Humans , Immunoenzyme Techniques , New York/epidemiology , Public Health , Real-Time Polymerase Chain Reaction , Retrospective Studies , Serotyping , Shiga-Toxigenic Escherichia coli/classification , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/immunology , Virulence Factors/genetics
7.
Histochem Cell Biol ; 132(1): 47-58, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19365637

ABSTRACT

We previously demonstrated that mRNAs for the subunits of the Arp2/3 complex localize to protrusions in fibroblasts (Mingle et al. in J Cell Sci 118:2425-2433, 2005). However, the signaling pathway that regulates Arp2/3 complex mRNA localization remains unknown. In this study we have identified lysophosphatidic acid (LPA) as a potent inducer of Arp2 mRNA localization to protrusions in fibroblasts via the RhoA-ROCK pathway. As RhoA is known to be activated locally in the cells, we sought to understand how spatial activation of Rho affects Arp2 mRNA localization. By sequentially performing fluorescence resonance energy transfer (FRET) and fluorescence in situ hybridization (FISH), we have visualized active RhoA and Arp2 mRNA in the same cells. Upon LPA stimulation, approximately two times more cells than those in the serum-free medium showed mutually exclusive localization of active RhoA and Arp2 mRNA. These results demonstrate the importance of localized activation of Rho in Arp2 mRNA localization and provide new insights as to how Rho regulates Arp2/3 complex mRNA localization. To our best knowledge, this is the first report in which FRET and FISH are combined to detect localized protein activity and mRNA in the same cells. This method should be easily adopted for the detection of other fluorescence protein based biosensors and DNA/RNA in the same cells.


Subject(s)
Actin-Related Protein 2/metabolism , Fibroblasts/metabolism , Lysophospholipids/pharmacology , RNA, Messenger/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , Cell Nucleus/metabolism , Cells, Cultured , Chick Embryo , Cytoplasm/metabolism , Fibroblasts/cytology , Fibroblasts/drug effects , Fluorescence Resonance Energy Transfer , In Situ Hybridization, Fluorescence
8.
J Clin Microbiol ; 47(5): 1372-8, 2009 May.
Article in English | MEDLINE | ID: mdl-19321726

ABSTRACT

The need for effective influenza antiviral susceptibility surveillance methods has increased due to the emergence of near-universal adamantane resistance in influenza A/H3N2 viruses during the 2005-2006 season and the appearance of oseltamivir resistance in the influenza A/H1N1 virus subtype during the 2007-2008 season. The two classes of influenza antivirals, the neuraminidase inhibitors (NAIs) and the adamantanes, are well characterized, as are many mutations that can confer resistance to these drugs. Adamantane resistance is imparted mainly by a S31N mutation in the matrix gene, while NAI resistance can result from a number of mutations in the neuraminidase gene. During the 2007-2008 season, a neuraminidase mutation (H274Y) conferring resistance to the NAI oseltamivir emerged worldwide in the A/H1N1 virus subtype. Surveillance methodology and data from New York (NY) and Wisconsin (WI) for the 2006-2007 and 2007-2008 influenza seasons are presented. We used an existing pyrosequencing method (R. A. Bright et al., Lancet 366:1175-1181, 2005) and a modified version of this method for detection of adamantane resistance mutations. For NAI resistance mutation detection, we used a mutation-specific pyrosequencing technique and developed a neuraminidase gene dideoxy sequencing method. Adamantane resistance in the A/H3N2 virus samples was 100% for 2007-2008, similar to the 99.8% resistance nationwide as reported by the CDC. Adamantane resistance was found in only 1.2% of NY and WI A/H1N1 virus samples, compared to that found in 10.8% of samples tested nationwide as reported by the CDC. Influenza A/H1N1 virus H274Y mutants were found in 11.1% of NY samples for 2007-2008, a level comparable to the 10.9% nationwide level reported by the CDC; in contrast, mutants were found in 17.4% of WI samples. These results indicate the need for regional influenza antiviral surveillance.


Subject(s)
Adamantane/pharmacology , Antiviral Agents/pharmacology , Drug Resistance, Viral , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects , Influenza, Human/virology , Microbial Sensitivity Tests/methods , Amino Acid Substitution/genetics , Humans , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/isolation & purification , Mutation, Missense , Neuraminidase/genetics , New York , RNA, Viral/genetics , Sequence Analysis, DNA , Viral Proteins/genetics , Wisconsin
9.
J Cell Sci ; 118(Pt 11): 2425-33, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15923655

ABSTRACT

The actin-related protein 2/3 (Arp2/3) complex is a crucial actin polymerization nucleator and is localized to the leading protrusions of migrating cells. However, how the multiprotein complex is targeted to the protrusions remains unknown. Here, we demonstrate that mRNAs for the seven subunits of the Arp2/3 complex are localized to the protrusions in fibroblasts, supporting a hypothesis that the Arp2/3 complex is targeted to its site of function by mRNA localization. Depletion of serum from culture medium inhibits Arp2/3-complex mRNA localization to the protrusion, whereas serum stimulation leads to significant mRNA localization within 30 minutes. The effect of serum suggests that Arp2/3-complex mRNA localization is a cellular response to extracellular stimuli. The localization of the Arp2/3 complex mRNAs is dependent on both actin filaments and microtubules, because disruption of either cytoskeletal system (with cytochalasin D and colchicine, respectively) inhibited the localization of all seven subunit mRNAs. In addition, myosin inhibitors significantly inhibit Arp2 mRNA localization in chicken embryo fibroblasts, suggesting a myosin motor dependent mechanism for Arp2/3-complex mRNA localization.


Subject(s)
Cell Movement/physiology , Cytoskeletal Proteins/metabolism , Fibroblasts/metabolism , Molecular Motor Proteins/metabolism , Pseudopodia/metabolism , Actin-Related Protein 2 , Actin-Related Protein 3 , Actins/metabolism , Animals , Cells, Cultured , Chick Embryo , Cytoskeleton/metabolism , Fibroblasts/cytology , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...