Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 650(Pt 2): 2423-2436, 2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30292998

ABSTRACT

Modelling of particle exposure is a useful tool for preliminary exposure assessment in workplaces with low and high exposure concentrations. However, actual exposure measurements are needed to assess models reliability. Worker exposure was monitored during packing of an inorganic granulate fertilizer at industrial scale using small and big bags. Particle concentrations were modelled with one and two box models, where the emission source was estimated with the fertilizer's dustiness index. The exposure levels were used to calculate inhaled dose rates and test accuracy of the exposure modellings. The particle number concentrations were measured from worker area by using a mobility and optical particle sizer which were used to calculate surface area and mass concentrations. The concentrations in the worker area during pre-activity ranged 63,797-81,073 cm-3, 4.6 × 106 to 7.5 × 106 µm2 cm-3, and 354 to 634 µg m-3 (respirable mass fraction) and during packing 50,300 to 85,949 cm-3, 4.3 × 106 to 7.6 × 106 µm2 cm-3, and 279 to 668 µg m-3 (respirable mass fraction). Thus, the packing process did not significantly increase the exposure levels. Chemical exposure was also under control based on REACH standards. The particle surface area deposition rate in respiratory tract was up to 7.6 × 106 µm2 min-1 during packing, with 52%-61% of deposition occurring in the alveolar region. Ratios of the modelled and measured concentrations were 0.98 ±â€¯0.19 and 0.84 ±â€¯0.12 for small and big bags, respectively, when using the one box model, and 0.88 ±â€¯0.25 and 0.82 ±â€¯0.12, when using the two box model. The modelling precision improved for both models when outdoor particle concentrations were included. This study shows that exposure concentrations in a low emission industrial scenario, e.g. during packing of a fertilizer, can be predicted with a reasonable accuracy by using the concept of dustiness and mass balance models.


Subject(s)
Air Pollutants, Occupational/analysis , Environmental Monitoring/methods , Fertilizers , Inhalation Exposure/analysis , Occupational Exposure/analysis , Humans , Manufacturing and Industrial Facilities , Models, Theoretical , Reproducibility of Results , Risk Assessment/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...