Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
ACS Appl Mater Interfaces ; 16(12): 14864-14882, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38483816

ABSTRACT

This research introduces a novel series of perfluorinated Zn(II) porphyrins with positive oxidation potentials designed as sensitizers for photoelectrosynthetic cells, with a focus on promoting the oxidation of benzyl alcohol (BzOH) mediated by the 2,2,6,6-tetramethyl-1-piperidine N-oxyl (TEMPO) organocatalyst. Three dyes, CLICK-3, CLICK-4, and BETA-4, are meticulously designed to explore the impact of substituents and their positions on the perfluorinated porphyrin ring in terms of redox potentials and energy level alignment when coupled with SnO2/TiO2-based photoanodes and TEMPO mediator. A comprehensive analysis utilizing spectroscopy, electrochemistry, photophysics, and computational techniques of the dyes in solution and sensitized thin films unveils an enhanced charge-separation character in the 4D-π-1A type BETA-4. Incorporating four dimethylamino donor groups at the periphery of the porphyrin ring and a BTD-accepting linker at the ß-pyrrolic position equips the structure with a more efficient donor-acceptor system. This enhancement ensures improved light-harvesting capacity, resulting in a doubled incident photon-to-current conversion efficiency (IPCE% ≃30%) in the presence of LiI compared to meso-substituted dyes CLICK-3 and CLICK-4. Sensitizing SnO2/TiO2 thin films with BETA-4 successfully promotes the photooxidation of benzyl alcohol (BzOH) in the presence of the rapid TEMPO radical catalyst, yielding photocurrents of approximately 125 µA/cm2 in an optimized TBPy/LiClO4/ACN electrolyte. Notably, when lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) replaces TBPy as the base for TEMPO-catalyzed BzOH oxidation, a remarkable photocurrent of around 800 µA/cm2 is achieved, marking one of the highest values reported for this photoelectrochemical reaction to date. This study underscores that the proper functionalization of perfluorinated zinc porphyrins positions these dyes as ideal candidates for sensitizing SnO2/TiO2 in the photodriven oxidation of BzOH. It also highlights the crucial role of carefully tuning electrolyte composition based on the electronic properties of molecular sensitizers.

2.
J Am Chem Soc ; 145(48): 26122-26132, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37984877

ABSTRACT

Decoration of semiconductor photocatalysts with cocatalysts is generally done by a step-by-step assembly process. Here, we describe the self-assembling and self-activating nature of a photocatalytic system that forms under illumination of reduced anatase TiO2 nanoparticles in an aqueous Ni2+ solution. UV illumination creates in situ a Ni+/TiO2/Ti3+ photocatalyst that self-activates and, over time, produces H2 at a higher rate. In situ X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy show that key to self-assembly and self-activation is the light-induced formation of defects in the semiconductor, which enables the formation of monovalent nickel (Ni+) surface states. Metallic nickel states, i.e., Ni0, do not form under the dark (resting state) or under illumination (active state). Once the catalyst is assembled, the Ni+ surface states act as electron relay for electron transfer to form H2 from water, in the absence of sacrificial species or noble metal cocatalysts.

3.
Molecules ; 28(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37513427

ABSTRACT

The synthesis of iodinated compounds using cheap, simple, and green strategies is of fundamental importance. Iodination reactions are mainly used to synthesize useful intermediates, especially in the pharmaceutical field, where they are employed for the production of contrast media or of iodinated active pharmaceutical ingredients. Traditional synthetic methods suffer from the use of erosive, toxic, or hazardous reactants. Approaches which involve the use of molecular iodine as an iodinating agent require the addition of an oxidizing agent, which is often difficult to handle. Electrochemistry can offer a valid and green alternative by avoiding the addition of such oxidizing agents, transforming the iodine source in the active species through the use of electrons as the main reactants. Herein, we report the electrochemical iodination with the generation of iodinating species in situ in water by using iodides as the source of iodine atoms. First of all, the electrochemical behavior of iodide and iodine in water on carbonaceous anodes was studied and, after selecting the suitable potential, in situ electrochemical iodination was successfully applied to 5-hydroxyisophthalic acid and 5-sulfosalicylic acid, comparing the iodinating power of I2 and iodonium species.

4.
ACS Nano ; 17(12): 11427-11438, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37310716

ABSTRACT

Nanoscale investigation of the reactivity of photocatalytic systems is crucial for their fundamental understanding and improving their design and applicability. Here, we present a photochemical nanoscopy technique that unlocks the local spatial detection of molecular products during plasmonic hot-carrier-driven photocatalytic reactions with nanometric precision. By applying the methodology to Au/TiO2 plasmonic photocatalysts, we experimentally and theoretically determined that smaller and denser Au nanoparticle arrays present lower optical contribution with quantum efficiency in hot-hole-driven photocatalysis closely related to the population heterogeneity. As expected, the highest quantum yield from a redox probe oxidation is achieved at the plasmon peak. Investigating a single plasmonic nanodiode, we unravel the areas where oxidation and reduction products are evolved with subwavelength resolution (∼200 nm), illustrating the bipolar behavior of such nanosystems. These results open the way to quantitative investigations at the nanoscale to evaluate the photocatalytic reactivity of low-dimensional materials in a variety of chemical reactions.

5.
Rev Cardiovasc Med ; 23(3): 107, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35345274

ABSTRACT

Cardiac simulation has moved from early life-saving pacemakers meant only to prevent asystole to current devices capable of physiologic stimulation for the treatment of heart rhythm and heart failure, that are also intended for remote patient and disease-progression monitoring. The actual vision of contemporary pacing aims to correct the electrophysiologic roots of mechanical inefficiency regardless of underlying structural heart diseases. The awareness of the residual cardiac dyssynchrony related to customary cardiac pacing has changed the concept of what truly represents "physiologic pacing". On a different perspective, leadless stimulation to abolish CIED surgery and prevent lead-related complications is becoming a priority both for young device recipients and for frail, elderly patients. Careful clinical evaluation attempts to bridge decision-making to patient-tailored therapy.


Subject(s)
Heart Failure , Pacemaker, Artificial , Aged , Equipment Design , Forecasting , Heart Failure/diagnosis , Heart Failure/therapy , Humans
6.
Molecules ; 26(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34885863

ABSTRACT

This work aims at reviewing the most impactful results obtained on the development of Cu-based photocathodes. The need of a sustainable exploitation of renewable energy sources and the parallel request of reducing pollutant emissions in airborne streams and in waters call for new technologies based on the use of efficient, abundant, low-toxicity and low-cost materials. Photoelectrochemical devices that adopts abundant element-based photoelectrodes might respond to these requests being an enabling technology for the direct use of sunlight to the production of energy fuels form water electrolysis (H2) and CO2 reduction (to alcohols, light hydrocarbons), as well as for the degradation of pollutants. This review analyses the physical chemical properties of Cu2O (and CuO) and the possible strategies to tune them (doping, lattice strain). Combining Cu with other elements in multinary oxides or in composite photoelectrodes is also discussed in detail. Finally, a short overview on the possible applications of these materials is presented.

7.
Expert Rev Med Devices ; 18(2): 161-177, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33336616

ABSTRACT

Introduction: Cardiac stimulation evolved from life-saving devices to prevent asystole to the treatment of heart rhythm disorders and heart failure, capable of remote patient and disease-progression monitoring. Cardiac stimulation nowadays aims to correct the electrophysiologic roots of mechanical inefficiency in different structural heart diseases.Areas covered: Clinical experience, as per available literature, has led to awareness of the concealed risks of customary cardiac pacing, that can inadvertently cause atrio-ventricular and inter/intra-ventricular dyssynchrony. New pacing modalities have emerged, leading to a new concept of what truly represents 'physiologic pacing' beyond maintenance of atrio-ventricular coupling. In this article we will analyze the emerging evidence in favor of the available strategies to achieve an individualized physiologic setting in bradycardia pacing, and the hints of future developments.Expert opinion: 'physiologic stimulation' technologies should evolve to enable an effective and widespread adoption. In one way new guiding catheters and the adoption of electrophysiologic guidance and non-fluoroscopic lead implantation are needed to make His-Purkinje pacing successful and effective at long term in a shorter procedure time; in the other way leadless stimulation needs to upgrade to a superior physiologic setting to mimic customary DDD pacing and possibly His-Purkinje pacing.


Subject(s)
Bradycardia/therapy , Cardiac Pacing, Artificial/trends , Cardiac Resynchronization Therapy , Clinical Trials as Topic , Electric Stimulation , Heart Conduction System/pathology , Heart Ventricles/pathology , Humans
9.
Langmuir ; 36(39): 11564-11572, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-32900201

ABSTRACT

An FeNi (oxy)hydroxide cocatalyst overlayer was photoelectrochemically deposited on a thin-film hematite (α-Fe2O3) photoanode, leading to a cathodic shift of ∼100 mV in the photocurrent onset potential. Operando X-ray absorption spectroscopy (XAS) at the Fe and Ni K-edges was used to study the changes in the overlayer with potential in the dark and under illumination conditions. Potential or illumination only had a minor effect on the Fe oxidation state, suggesting that Fe atoms do not accumulate significant amount of charge over the whole potential range. In contrast, the Ni K-edge spectra showed pronounced dependence on potential in the dark and under illumination. The effect of illumination is to shift the onset for the Ni oxidation because of the generated photovoltage and suggests that holes that are photogenerated in hematite are transferred mainly to the Ni atoms in the overlayer. The increase in the oxidation state of Ni proceeds at potentials corresponding to the redox wave of Ni, which occurs immediately prior to the onset of the oxygen evolution reaction (OER). Linear combination fitting analysis of the obtained spectra suggests that the overlayer does not have to be fully oxidized to promote oxygen evolution. Cathodic discharge measurements show that the photogenerated charge is stored almost exclusively in the Ni atoms within the volume of the overlayer.

10.
Nanomaterials (Basel) ; 10(9)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32882878

ABSTRACT

One of the major drawbacks in Lithium-air batteries is the sluggish kinetics of the oxygen reduction reaction (ORR). In this context, better performances can be achieved by adopting a suitable electrocatalyst, such as MnO2. Herein, we tried to design nano-MnO2 tuning the final ORR electroactivity by tailoring the doping agent (Co or Fe) and its content (2% or 5% molar ratios). Staircase-linear sweep voltammetries (S-LSV) were performed to investigate the nanopowders electrocatalytic behavior in organic solvent (propylene carbonate, PC and 0.15 M LiNO3 as electrolyte). Two percent Co-doped MnO2 revealed to be the best-performing sample in terms of ORR onset shift (of ~130 mV with respect to bare glassy carbon electrode), due to its great lattice defectivity and presence of the highly electroactive γ polymorph (by X-ray diffraction analyses, XRPD and infrared spectroscopy, FTIR). 5% Co together with 2% Fe could also be promising, since they exhibited fewer diffusive limitations, mainly due to their peculiar pore distribution (by Brunauer-Emmett-Teller, BET) that disfavored the cathode clogging. Particularly, a too-high Fe content led to iron segregation (by energy dispersive X-ray spectroscopy, EDX, X-ray photoelectron spectroscopy, XPS and FTIR) provoking a decrease of the electroactive sites, with negative consequences for the ORR.

11.
ACS Appl Mater Interfaces ; 12(34): 38211-38221, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32706239

ABSTRACT

We investigate the co-catalytic activity of PtCu alloy nanoparticles for photocatalytic H2 evolution from methanol-water solutions. To produce the photocatalysts, a few-nanometer-thick Pt-Cu bilayers are deposited on anodic TiO2 nanocavity arrays and converted by solid-state dewetting via a suitable thermal treatment into bimetallic PtCu nanoparticles. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results prove the formation of PtCu nanoalloys that carry a shell of surface oxides. X-ray absorption near-edge structure (XANES) data support Pt and Cu alloying and indicate the presence of lattice disorder in the PtCu nanoparticles. The PtCu co-catalyst on TiO2 shows a synergistic activity enhancement and a significantly higher activity toward photocatalytic H2 evolution than Pt- or Cu-TiO2. We propose the enhanced activity to be due to Pt-Cu electronic interactions, where Cu increases the electron density on Pt, favoring a more efficient electron transfer for H2 evolution. In addition, Cu can further promote the photoactivity by providing additional surface catalytic sites for hydrogen recombination. Remarkably, when increasing the methanol concentration up to 50 vol % in the reaction phase, we observe for PtCu-TiO2 a steeper activity increase compared to Pt-TiO2. A further increase in methanol concentration (up to 80 vol %) causes for Pt-TiO2 a clear activity decay, while PtCu-TiO2 still maintains a high level of activity. This suggests improved robustness of PtCu nanoalloys against poisoning from methanol oxidation products such as CO.

12.
Heart Rhythm ; 17(11): 1897-1903, 2020 11.
Article in English | MEDLINE | ID: mdl-32512176

ABSTRACT

BACKGROUND: Recent studies suggest that atrioventricular (AV) conduction may recover after pacemaker (PM) implantation following transcatheter aortic valve replacement (TAVR), but little is known about long-term follow-up of such patients. OBJECTIVE: The purpose of this study was to evaluate the long-term percentage of right ventricular pacing in patients who underwent TAVR and required PM implantation stratified based on the indication for permanent pacing. METHODS: Retrospective analysis of all consecutive patients who underwent TAVR from February 2008 to August 2019 at 3 centers was performed. Patients already implanted with a PM/implantable cardioverter-defibrillator (ICD) before TAVR, implanted with a cardiac resynchronization therapy device, or implanted >30 days after TAVR were excluded. Eligible patients were divided into 2 groups based on the presence (persistent atrioventricular block [AVB] group) or absence (nonpersistent AVB group) of persistent third-degree AVB after TAVR. RESULTS: A total of 1594 patients underwent TAVR. Two hundred four patients were implanted with a PM or ICD after TAVR and 32 met exclusion criteria, so 172 patients were eligible (median time TAVR-PM implant 4 days) for a total of 352 follow-up visits analyzed. A significant difference in the percentage of ventricular pacing was observed at follow-up performed 7-90 days after implantation (98% persistent AVB group vs 8% nonpersistent AVB group; P <.001). This difference remained significant at follow-up performed 91-270 days (95% vs 3.5%; P <.001), 271-540 days (95.5% vs 3%; P = .006), and 541-900 days (97.4% vs 2.2%; P <.001) after implantation. CONCLUSION: Patients requiring PM implantation due to persistent third-degree AVB after TAVR were less likely to show AV conduction recovery, whereas patients implanted for other indications showed a low percentage of pacing during follow-up.


Subject(s)
Aortic Valve/surgery , Atrioventricular Block/therapy , Cardiac Pacing, Artificial/methods , Heart Conduction System/physiopathology , Heart Valve Diseases/surgery , Postoperative Complications , Transcatheter Aortic Valve Replacement/adverse effects , Aged, 80 and over , Atrioventricular Block/etiology , Atrioventricular Block/physiopathology , Female , Follow-Up Studies , Heart Ventricles/physiopathology , Humans , Male , Retrospective Studies , Risk Factors , Time Factors
13.
Nanomaterials (Basel) ; 10(6)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32585978

ABSTRACT

Sn-modification of TiO2 photocatalysts has been recently proposed as a suitable strategy to improve pollutant degradation as well as hydrogen production. In particular, visible light activity could be promoted by doping with Sn2+ species, which are, however, thermally unstable. Co-promotion with N and Sn has been shown to lead to synergistic effects in terms of visible light activity, but the underlying mechanism has, so far, been poorly understood due to the system complexity. Here, the structural, optical, and electronic properties of N,Sn-copromoted, nanostructured TiO2 from sol-gel synthesis were investigated: the Sn/Ti molar content was varied in the 0-20% range and different post-treatments (calcination and low temperature hydrothermal treatment) were adopted in order to promote the sample crystallinity. Depending on the adopted post-treatment, the optical properties present notable differences, which supports a combined role of Sn dopants and N-induced defects in visible light absorption. X-ray absorption spectroscopy at the Ti K-edge and Sn L2,3-edges shed light onto the electronic properties and structure of both Ti and Sn species, evidencing a marked difference at the Sn L2,3-edges between the samples with 20% and 5% Sn/Ti ratio, showing, in the latter case, the presence of tin in a partially reduced state.

14.
J Phys Chem C Nanomater Interfaces ; 124(26): 14202-14212, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-33815647

ABSTRACT

Ambient-pressure operando soft X-ray absorption spectroscopy (soft-XAS) was applied to study the reactivity of hydroxylated SnO2 nanoparticles toward reducing gases. H2 was first used as a test case, showing that the gas phase and surface states can be simultaneously probed: Soft-XAS at the O K-edge gains sensitivity toward the gas phase, while at the Sn M4,5-edges, tin surface states are explicitly probed. Results obtained by flowing hydrocarbons (CH4 and CH3CHCH2) unequivocally show that these gases react with surface hydroxyl groups to produce water without producing carbon oxides and release electrons that localize on Sn to eventually form SnO. The partially reduced SnO2 - x layer at the surface of SnO2 is readily reoxidized to SnO2 by treating the sample with O2 at mild temperatures (>200 °C), revealing the nature of "electron sponge" of tin oxide. The experiments, combined with DFT calculations, allowed devising of a mechanism for dissociative hydrocarbon adsorption on SnO2, involving direct reduction of Sn sites at the surface via cleavage of C-H bonds and the formation of methoxy- and/or methyl-tin species at the surface.

15.
Article in English | MEDLINE | ID: mdl-31752399

ABSTRACT

Chlorine dioxide (ClO2) has been widely used as a disinfectant in drinking water in the past but its effects on water pipes have not been investigated deeply, mainly due to the difficult experimental set-up required to simulate real-life water pipe conditions. In the present paper, four different kinds of water pipes, two based on plastics, namely random polypropylene (PPR) and polyethylene of raised temperature (PERT/aluminum multilayer), and two made of metals, i.e., copper and galvanized steel, were put in a semi-closed system where ClO2 was dosed continuously. The semi-closed system allowed for the simulation of real ClO2 concentrations in common water distribution systems and to simulate the presence of pipes made with different materials from the source of water to the tap. Results show that ClO2 has a deep effect on all the materials tested (plastics and metals) and that severe damage occurs due to its strong oxidizing power in terms of surface chemical modification of metals and progressive cracking of plastics. These phenomena could in turn become an issue for the health and safety of drinking water due to progressive leakage of degraded products in the water.


Subject(s)
Chlorine Compounds/chemistry , Chlorine/chemistry , Disinfectants/chemistry , Metals/chemistry , Oxides/chemistry , Plastics/chemistry , Water Supply
16.
Inorg Chem ; 56(12): 6982-6989, 2017 Jun 19.
Article in English | MEDLINE | ID: mdl-28558207

ABSTRACT

Energy-dispersive X-ray absorption spectroscopy was applied, aimed at solving the problem of the structure and stability of a copper(II) lactate complex in alkaline solution, used as a precursor for the electrodeposition of Cu2O. The application of multiple scattering calculations to the simulation of the X-ray absorption near-edge structure part of the spectra allowed an accurate resolution of the structure: the copper(II) cation is surrounded by four lactate ions in a distorted tetrahedral environment, with the lactate anions acting as monodentate ligands. This results in an atomic arrangement where copper is surrounded by four oxygen atoms located at quite a short distance (ca. 1.87 Å) and four oxygen atoms located quite far apart (ca. 3.1-3.2 Å). The complex was finally found to be stable in a wide range of applied potentials.

17.
Phys Chem Chem Phys ; 19(8): 5715-5720, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28230223

ABSTRACT

Electrochemical devices for energy conversion and storage are central for a sustainable economy. The performance of electrodes is driven by charge transfer across different layer materials and an understanding of the mechanistics is pivotal to gain improved efficiency. Here, we directly observe the transfer of photogenerated charge carriers in a photoanode made of hematite (α-Fe2O3) and a hydrous iridium oxide (IrOx) overlayer, which plays a key role in photoelectrochemical water oxidation. Through the use of operando X-ray absorption spectroscopy (XAS), we probe the change in occupancy of the Ir 5d levels during optical band gap excitation of α-Fe2O3. At potentials where no photocurrent is observed, electrons flow from the α-Fe2O3 photoanode to the IrOx overlayer. In contrast, when the composite electrode produces a sustained photocurrent (i.e., 1.4 V vs. RHE), a significant transfer of holes from the illuminated α-Fe2O3 to the IrOx layer is clearly demonstrated. The analysis of the operando XAS spectra further suggests that oxygen evolution actually occurs both at the α-Fe2O3/electrolyte and α-Fe2O3/IrOx interfaces. These findings represent an important outcome for a better understanding of composite photoelectrodes and their use in photoelectrochemical systems, such as hydrogen generation or CO2 reduction from sunlight.

18.
ACS Appl Mater Interfaces ; 8(33): 21250-60, 2016 Aug 24.
Article in English | MEDLINE | ID: mdl-27468763

ABSTRACT

Light-driven water splitting is one of the most promising approaches for using solar energy in light of more sustainable development. In this paper, a highly efficient p-type copper(II) oxide photocathode is studied. The material, prepared by thermal treatment of CuI nanoparticles, is initially partially reduced upon working conditions and soon reaches a stable form. Upon visible-light illumination, the material yields a photocurrent of 1.3 mA cm(-2) at a potential of 0.2 V vs a reversible hydrogen electrode at mild pH under illumination by AM 1.5 G and retains 30% of its photoactivity after 6 h. This represents an unprecedented result for a nonprotected Cu oxide photocathode at neutral pH. The photocurrent efficiency as a function of the applied potential was determined using scanning electrochemical microscopy. The material was characterized in terms of photoelectrochemical features; X-ray photoelectron spectroscopy, X-ray absorption near-edge structure, fixed-energy X-ray absorption voltammetry, and extended X-ray absorption fine structure analyses were carried out on pristine and used samples, which were used to explain the photoelectrochemical behavior. The optical features of the oxide are evidenced by direct reflectance spectroscopy and fluorescence spectroscopy, and Mott-Schottky analysis at different pH values explains the exceptional activity at neutral pH.

19.
J Synchrotron Radiat ; 23(2): 622-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26917152

ABSTRACT

Three-dimensional printed multi-purpose electrochemical devices for X-ray absorption spectroscopy are presented in this paper. The aim of this work is to show how three-dimensional printing can be a strategy for the creation of electrochemical cells for in situ and in operando experiments by means of synchrotron radiation. As a case study, the description of two cells which have been employed in experiments on photoanodes for photoelectrochemical water splitting are presented. The main advantages of these electrochemical devices are associated with their compactness and with the precision of the three-dimensional printing systems which allows details to be obtained that would otherwise be difficult. Thanks to these systems it was possible to combine synchrotron-based methods with complementary techniques in order to study the mechanism of the photoelectrocatalytic process.

20.
Nanomaterials (Basel) ; 6(1)2016 Jan 06.
Article in English | MEDLINE | ID: mdl-28344267

ABSTRACT

Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO2 nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD), energy dispersive X-ray (EDX)), morphological (SEM, high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM)/TEM), surface (Brunauer Emmet Teller (BET)-Barrett Joyner Halenda (BJH) method) and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC) with 1.0% Ag-doped hydrothermal MnO2 (M_hydro_1.0%Ag) allows reaching very high specific capacity close to 1400 mAh·g-1. Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO2 nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...