Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Neurosci ; 30(3): 177-187, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37779546

ABSTRACT

Background: Sequential changes in brainstem and spinal cord neurons after traumatic injury to peripheral nerves are related to neuropathic pain symptoms. Purpose: This study was conducted to elucidate the influence of nerve insult on stimulus-induced c-Fos expression and ERK phosphorylation by brainstem neurons. Methods: The brainstem trigeminal sensory nuclear complex (BTSNC) was examined for neuronal profiles immunolabeled with c-Fos and phosphorylated ERK (p-ERK) antibodies elicited by stimulation of the tongue with capsaicin after lingual or inferior alveolar nerve (IAN) injury. Results: Abundant neuronal profiles immunolabeled for c-Fos and p-ERK elicited by capsaicin were distributed in the spinal trigeminal nucleus caudalis (Vc) without nerve injury. The spinal trigeminal nucleus oralis (Vo) contained limited numbers of these neuronal profiles after stimulation of the tongue. A significant reduction of these neuronal profiles in the ipsilateral Vc was detected after lingual nerve injury. After IAN injury, an increased number of neuronal profiles immunolabeled for c-Fos elicited by capsaicin was noted, while that of p-ERK was left unchanged in the ipsilateral Vc. On the both sides of the Vo, an increased number of capsaicin-induced neuronal profiles immunolabeled for c-Fos and p-ERK was detected after lingual or IAN injury. Conclusion: Differential effects of lingual or IAN injury on stimulus-induced c-Fos expression and ERK phosphorylation by Vo and Vc neurons may be involved in the complex nature of symptoms of trigeminal neuralgia.

2.
Adv Mater ; 35(6): e2208151, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36433696

ABSTRACT

Physical entities with inherent randomness have been investigated as anti-counterfeiting labels based on physical unclonable functions (PUFs). Herein, a transparent and flexible optical PUF label associated with multilevel complexity is demonstrated by taking advantage of the optical properties of hierarchical morphologies of the composite film composed of metal halide perovskite nanoparticles (MAPbBr3 NPs) and the intrinsic spinodal-decomposition-like phase separation of polymer blend (PMMA/PS blend). Due to the combinatorial effects of the photolysis synthesis of MAPbBr3 and the thermodynamic instability of the PMMA/PS blend, randomized patterns emerge at two-level scales. These patterns are intrinsically non-deterministic, and therefore, the PUF labels from the multilevel random patterns are challenging to replicate. This is mainly attributed to random spot patterns (higher-level patterns) confined within intricate bicontinuous patterns (lower-level patterns).

3.
Sci Rep ; 10(1): 2172, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32034230

ABSTRACT

Organic-inorganic halide perovskite nanocrystals or quantum dots (PQDs) are excellent candidates for optoelectronic applications, such as lasers, solar cells, light emitting diodes, and single photon sources. However, the potential applications of PQDs can expand once the photoluminescence, and in particular, the blinking behaviors of single PQDs are understood. Although the blinking of PQDs has been studied extensively recently, the underlying mechanism of the blinking behaviors is still under debate. In this study, we confirmed that type-A and type-B-HC (hot carrier) blinking, contributed to PQD blinking using their fluorescence lifetime intensity distribution (FLID). Type-B-HC blinking was experimentally confirmed for the first time for formamidinium based PQDs, and the simultaneous contributions of type-A and type-B blinking were clearly specified. Further, we related different FLID data to the ON/OFF time distribution as distinct features of different blinking types. We also emphasized that detection capability was crucial for correctly elucidating the blinking mechanism.

4.
Nanoscale ; 11(13): 5868-5873, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30888355

ABSTRACT

FAαPbBr2+α composite perovskites consisting of 0D FA4PbBr6 and 3D FAPbBr3 have been synthesized by a solid state reaction. Due to the endotaxy passivation of FAPbBr3 by FA4PbBr6, FAPbBr3 crystals were stably deformed without agglomeration from the cubic to the orthorhombic structure by compression, which led to a significant PL enhancement.

5.
Adv Mater ; 30(39): e1802555, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30039549

ABSTRACT

Perovskite nanoparticle composite films with capability of high-resolution patterning (≥2 µm) and excellent resistance to various aqueous and organic solvents are prepared by in situ photosynthesis of acrylate polymers and formamidinium lead halide (FAPbX3 ) nanoparticles. Both positive- and negative-tone patterns of FAPbX3 nanoparticles are created by controlling the size exclusive flow of nanoparticles in polymer networks. The position of nanoparticles is spatially controlled in both lateral and vertical directions. The composite films show high photoluminescence quantum yield (up to 44%) and broad color tunability in visible region (λpeak = 465-630 nm).

6.
RSC Adv ; 8(63): 36272-36279, 2018 Oct 22.
Article in English | MEDLINE | ID: mdl-35558445

ABSTRACT

Hyperuniform photonic structures (HPSs) have been doped with complex index materials to increase their reflectivity and colour expression range. HPSs synthesized using dielectric SiO2 nanoparticles have been mixed with a small amount of dopant nanoparticles (c d ≤ 1%) having a complex refractive index. Various dyes including Sudan I, Sudan Blue II, Alizarin yellow GG, Bromocresol purple and polydopamine (PDA) are used as dopants. Large reflectivity enhancements of HPSs (∼100%) are observed by resonant interference of photonic band gaps (PBGs) and optical band gaps (OBGs). Reflectivity enhancements are observed only when PBGs of HPSs match with OBGs of dopants. The colour expression range of HPS increases by 600% by doping with melanine-like PDA nanoparticles, which have the imaginary part of the refractive index in whole visible range.

SELECTION OF CITATIONS
SEARCH DETAIL
...