Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(8): 104963, 2023 08.
Article in English | MEDLINE | ID: mdl-37356720

ABSTRACT

Vimentin intermediate filaments form part of the cytoskeleton of mesenchymal cells, but under pathological conditions often associated with inflammation, vimentin filaments depolymerize as the result of phosphorylation or citrullination, and vimentin oligomers are secreted or released into the extracellular environment. In the extracellular space, vimentin can bind surfaces of cells and the extracellular matrix, and the interaction between extracellular vimentin and cells can trigger changes in cellular functions, such as activation of fibroblasts to a fibrotic phenotype. The mechanism by which extracellular vimentin binds external cell membranes and whether vimentin alone can act as an adhesive anchor for cells is largely uncharacterized. Here, we show that various cell types (normal and vimentin null fibroblasts, mesenchymal stem cells, and A549 lung carcinoma cells) attach to and spread on polyacrylamide hydrogel substrates covalently linked to vimentin. Using traction force microscopy and spheroid expansion assays, we characterize how different cell types respond to extracellular vimentin. Cell attachment to and spreading on vimentin-coated surfaces is inhibited by hyaluronic acid degrading enzymes, hyaluronic acid synthase inhibitors, soluble heparin or N-acetyl glucosamine, all of which are treatments that have little or no effect on the same cell types binding to collagen-coated hydrogels. These studies highlight the effectiveness of substrate-bound vimentin as a ligand for cells and suggest that carbohydrate structures, including the glycocalyx and glycosylated cell surface proteins that contain N-acetyl glucosamine, form a novel class of adhesion receptors for extracellular vimentin that can either directly support cell adhesion to a substrate or fine-tune the glycocalyx adhesive properties.


Subject(s)
Vimentin , Acetylglucosamine/chemistry , Cell Adhesion , Cell Movement , Hyaluronic Acid/chemistry , Intermediate Filaments/metabolism , Vimentin/metabolism , Humans , Cell Line, Tumor
2.
Acta Biomater ; 163: 106-116, 2023 06.
Article in English | MEDLINE | ID: mdl-36182057

ABSTRACT

The ability of tissues to sustain and withstand mechanical stress is critical to tissue development and healthy tissue maintenance. The mechanical properties of tissues are typically considered to be dominated by the fibrous extracellular matrix (ECM) component of tissues. Fiber network mechanics can capture certain mechanical features of tissues, such as shear strain stiffening, but is insufficient in describing the compressive response of certain tissues and blood clots that are rich in extracellular matrix. To understand the mechanical response of tissues, we employ a contemporary mechanical model, a fibrous network of fibrin embedded with inert bead inclusions that preserve the volume-conserving constraints of cells in tissues. Combining bulk mechanical rheology and a custom imaging device, we show that the presence of inclusions alters the local dynamic remodeling of the networks undergoing uniaxial compressive strains and demonstrate non-affine correlated motion within a fiber-bead network, predicted to stretch fibers in the network and lead to the ability of the network to stiffen under compression, a key feature of real tissues. These findings have important implications for understanding how local structural properties of cells and ECM fibers impact the bulk mechanical response of real tissues. STATEMENT OF SIGNIFICANCE: To understand why real tissue stiffens under compression, we study a model tissue system which also stiffens: a fibrin network embedded with stiff beads. We design a device that images compression of both fiber and fiber-bead networks. Distinct from previous imaging studies, this setup can dynamically capture network deformation on scales larger than single fibers. From the videos, we see fluid flow and network remodeling are both critical to compression behavior. The fiber-bead network has faster fluid flow, reduced network recovery, and correlated motion during network relaxation. We hypothesize that the beads hinder network relaxation of stretched fibers, thus retaining the applied stress and exhibiting stiffening. Our findings reveal important details for modeling tissue mechanics towards optimizing healthcare.


Subject(s)
Extracellular Matrix , Thrombosis , Humans , Models, Biological , Physical Phenomena , Stress, Mechanical , Fibrin/chemistry
3.
Biophys Rev (Melville) ; 4(2): 021304, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38504926

ABSTRACT

The central hypothesis of the genotype-phenotype relationship is that the phenotype of a developing organism (i.e., its set of observable attributes) depends on its genome and the environment. However, as we learn more about the genetics and biochemistry of living systems, our understanding does not fully extend to the complex multiscale nature of how cells move, interact, and organize; this gap in understanding is referred to as the genotype-to-phenotype problem. The physics of soft matter sets the background on which living organisms evolved, and the cell environment is a strong determinant of cell phenotype. This inevitably leads to challenges as the full function of many genes, and the diversity of cellular behaviors cannot be assessed without wide screens of environmental conditions. Cellular mechanobiology is an emerging field that provides methodologies to understand how cells integrate chemical and physical environmental stress and signals, and how they are transduced to control cell function. Biofilm forming bacteria represent an attractive model because they are fast growing, genetically malleable and can display sophisticated self-organizing developmental behaviors similar to those found in higher organisms. Here, we propose mechanobiology as a new area of study in prokaryotic systems and describe its potential for unveiling new links between an organism's genome and phenome.

4.
Oral Oncol ; 120: 105422, 2021 09.
Article in English | MEDLINE | ID: mdl-34218061

ABSTRACT

BACKGROUND: We examined the regenerative efficacy of the activated platelet-rich plasma (PRP) concentrate administered by local injection in an animal model mimicking partial glossectomy for tongue cancer. METHODS: Four-week-old mice were randomized to four groups; (1) a treatment-naïve control group, (2) a PRP group, (3) a hemiglossectomy group, and (4) a hemiglossectomy + PRP group. The activated PRP concentrate was injected into the deep layer of resected surfaces of mouse tongues immediately after excision, and tongue widths and lengths were measured on postoperative days (POD) 5 and 12. Gross tongue morphologies and microscopic findings were investigated. Inflammation and fibrous tissue areas were also measured, and immunohistochemical analysis was performed for c-kit, neurofilament, and S-100. RESULTS: The activated PRP concentrate reduced wound scar contracture, promoted wound healing, and reduced inflammation and wound fibrosis. On POD 12, histologic findings in the hemiglossectomy + PRP group were similar to those in the normal control group, and the intensity of stem cell factor receptor c-kit expression was also significantly greater in the PRP group than in the hemiglossectomy group on POD 12. Immunohistochemical staining revealed S100 and neurofilament expressions in the hemiglossectomy + PRP group were significantly more intense than in the hemiglossectomy group. CONCLUSION: Intralesional activated PRP concentrate injection has potential use for tongue regeneration, wound healing, and neural regeneration with minimal scarring after partial glossectomy.


Subject(s)
Glossectomy , Platelet-Rich Plasma , Regeneration , Tongue , Animals , Disease Models, Animal , Inflammation , Mice , Tongue/surgery , Wound Healing
5.
Int J Mol Sci ; 19(6)2018 May 30.
Article in English | MEDLINE | ID: mdl-29848992

ABSTRACT

It has previously been shown that the simultaneous activation of PI3K (phosphatidylinositol 3-kinase) and Ras/MAPK (mitogen-activated protein kinases) pathways facilitate tumor growth despite only inducing cancer cell dormancy individually. Determining the impacts on cellular mechanics each pathway incites alone and in unison is critical to developing non-toxic cancer therapies for triple-negative breast cancers. PTEN (phosphatase and tensin homolog) knockout and activated KRAS (Kristen rat sarcoma viral oncogene homolog) overexpression in healthy MCF-10A human breast epithelial cells activated the PI3K and Ras/MAPK pathways, respectively. Cell stiffness and fluidity were simultaneously measured using atomic force microscopy. Results suggest that PTEN knockout reduced cell stiffness and increased cell fluidity independent of PI3K activation. Effects of activated KRAS overexpression on cell stiffness depends on rigidity of cell culture substrate. Activated KRAS overexpression also counteracts the effects of PTEN knockout.


Subject(s)
Epithelial Cells/metabolism , Mitogen-Activated Protein Kinases/metabolism , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Actin Cytoskeleton/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Proliferation/physiology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/physiology , Female , Humans , Mitogen-Activated Protein Kinases/genetics , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics , Signal Transduction/physiology , ras Proteins/genetics , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...