Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
EBioMedicine ; 102: 105044, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447274

ABSTRACT

BACKGROUND: Preterm infants are more likely to experience severe respiratory syncytial virus (RSV) disease compared to term infants. The reasons for this are multi-factorial, however their immature immune system is believed to be a major contributing factor. METHODS: We collected cord blood from 25 preterm (gestational age 30.4-34.1 weeks) and 25 term infants (gestation age 37-40 weeks) and compared the response of cord blood mononuclear cells (CBMCs) to RSVA and RSVB stimulation using neutralising assays, high-dimensional flow cytometry, multiplex cytokine assays and RNA-sequencing. FINDINGS: We found that preterm and term infants had similar maternally derived neutralising antibody titres to RSVA and RSVB. Preterm infants had significantly higher myeloid dendritic cells (mDC) RSV infection compared to term infants. Differential gene expression analysis of RSVA stimulated CBMCs revealed enrichment of genes involved in cytokine production and immune regulatory pathways involving IL-10, IL-36γ, CXCL1, CXCL2, SOCS1 and SOCS3 in term infants, while differentially expressed genes (DEGs) in preterm infants were related to cell cycle (CDK1, TTK, ESCO2, KNL1, CDC25A, MAD2L1) without associated expression of immune response genes. Furthermore, enriched genes in term infants were highly correlated suggesting an increased co-ordination of their immune response to RSVA. When comparing DEGs in preterm and term infants following RSVB stimulation, no differences in immune response genes were identified. INTERPRETATION: Overall, our data suggests that preterm infants have a more restricted immunological response to RSVA compared with term infants. While further studies are required, these findings may help to explain why preterm infants are more susceptible to severe RSV disease and identify potential therapeutic targets to protect these vulnerable infants. FUNDING: Murdoch Children's Research Institute Infection and Immunity theme grant.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Infant , Child , Infant, Newborn , Humans , Infant, Premature , Cytokines/metabolism , Antiviral Agents , Acetyltransferases , Chromosomal Proteins, Non-Histone
2.
Pathogens ; 12(4)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37111482

ABSTRACT

Preterm infants are more susceptible to severe bacterial and viral infectious diseases than their full-term counterparts. A major contributor to this increased susceptibility may be due to differences in their ability to respond to pathogens. While studies have demonstrated altered bacterial Toll-like receptor (TLR) responses, there is limited data on viral TLR responses in preterm infants. In this study, cord blood mononuclear cells (CBMCs) from 10 moderately preterm (30.4-34.1 wGA), 10 term (37-39.5 wGA) infants, and 5 adults were stimulated with TLR2 (lipoteichoic acid), TLR3 (poly I:C), TLR4 (lipopolysaccharide), TLR7/8 (R848), and TLR9 (CpG-ODN 2216) agonists. Following stimulation, the cellular response was measured by intracellular flow cytometry to detect cell-specific NF-κB (as a marker of the inflammatory response), and multiplex assays were used to measure the cytokine response. This study found that preterm and term infants exhibit very similar baseline TLR expression. In response to both bacterial and viral TLR agonists comparing cell-specific NF-κB activation, preterm infants exhibited increased monocyte activation following LTA stimulation; however, no other differences were observed. Similarly, no difference in cytokine response was observed following stimulation with TLRs. However, a stronger correlation between NF-κB activation and cytokine responses was observed in term infants following poly I:C and R848 stimulation compared to preterm infants. In contrast, despite similar TLR expression, adults produced higher levels of IFN-α following R848 stimulation compared to preterm and term infants. These findings suggest preterm and term infants have a similar capacity to respond to both bacterial and viral TLR agonists. As preterm infants are more likely to develop severe infections, further research is required to determine the immunological factors that may be driving this and develop better interventions for this highly vulnerable group.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-113423

ABSTRACT

COVID-19, caused by the novel coronavirus SARS-CoV-2, has spread worldwide and put most of the world under lockdown. Despite that there have been emergently approved vaccines for SARS-CoV-2, COVID-19 cases, hospitalizations, and deaths have remained rising. Thus, rapid diagnosis and necessary public health measures are still key parts to contain the pandemic. In this study, the colorimetric isothermal nucleic acid amplification tests (iNAATs) for SARS-CoV-2 detection based on loop-mediated isothermal amplification (LAMP), cross-priming amplification (CPA), and polymerase spiral reaction (PSR) were designed and evaluated. The three methods showed the same limit of detection (LOD) value of 1 copy of the targeted gene per reaction. However, for the direct detection of SARS-CoV-2 genomic-RNA, LAMP outperformed both CPA and PSR, exhibiting the LOD value of roughly 43.14 genome copies/reaction. The results can be read with the naked eye within 45 minutes, without cross-reactivity to closely related coronaviruses. Moreover, the direct detection of SARS-CoV-2 RNA in simulated patient specimens by iNAATs was also successful. Finally, the ready-to-use lyophilized reagents for LAMP reactions were shown to maintain the sensitivity and LOD value of the liquid assays. The results indicate that the colorimetric lyophilized LAMP kit developed herein is highly suitable for detecting SARS-CoV-2 nucleic acids at point-of-care.

SELECTION OF CITATIONS
SEARCH DETAIL
...