Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979192

ABSTRACT

Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer Disease (AD), and recent proteomic studies highlight a disruption of glial carbohydrate metabolism with disease progression. Here, we report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN) in the first step of the kynurenine pathway, rescues hippocampal memory function and plasticity in preclinical models of amyloid and tau pathology by restoring astrocytic metabolic support of neurons. Activation of IDO1 in astrocytes by amyloid-beta 42 and tau oligomers, two major pathological effectors in AD, increases KYN and suppresses glycolysis in an AhR-dependent manner. Conversely, pharmacological IDO1 inhibition restores glycolysis and lactate production. In amyloid-producing APP Swe -PS1 ΔE9 and 5XFAD mice and in tau-producing P301S mice, IDO1 inhibition restores spatial memory and improves hippocampal glucose metabolism by metabolomic and MALDI-MS analyses. IDO1 blockade also rescues hippocampal long-term potentiation (LTP) in a monocarboxylate transporter (MCT)-dependent manner, suggesting that IDO1 activity disrupts astrocytic metabolic support of neurons. Indeed, in vitro mass-labeling of human astrocytes demonstrates that IDO1 regulates astrocyte generation of lactate that is then taken up by human neurons. In co-cultures of astrocytes and neurons derived from AD subjects, deficient astrocyte lactate transfer to neurons was corrected by IDO1 inhibition, resulting in improved neuronal glucose metabolism. Thus, IDO1 activity disrupts astrocytic metabolic support of neurons across both amyloid and tau pathologies and in a model of AD iPSC-derived neurons. These findings also suggest that IDO1 inhibitors developed for adjunctive therapy in cancer could be repurposed for treatment of amyloid- and tau-mediated neurodegenerative diseases.

2.
Alzheimers Dement ; 20(7): 4434-4460, 2024 07.
Article in English | MEDLINE | ID: mdl-38779814

ABSTRACT

INTRODUCTION: Tropomyosin related kinase B (TrkB) and C (TrkC) receptor signaling promotes synaptic plasticity and interacts with pathways affected by amyloid beta (Aß) toxicity. Upregulating TrkB/C signaling could reduce Alzheimer's disease (AD)-related degenerative signaling, memory loss, and synaptic dysfunction. METHODS: PTX-BD10-2 (BD10-2), a small molecule TrkB/C receptor partial agonist, was orally administered to aged London/Swedish-APP mutant mice (APPL/S) and wild-type controls. Effects on memory and hippocampal long-term potentiation (LTP) were assessed using electrophysiology, behavioral studies, immunoblotting, immunofluorescence staining, and RNA sequencing. RESULTS: In APPL/S mice, BD10-2 treatment improved memory and LTP deficits. This was accompanied by normalized phosphorylation of protein kinase B (Akt), calcium-calmodulin-dependent kinase II (CaMKII), and AMPA-type glutamate receptors containing the subunit GluA1; enhanced activity-dependent recruitment of synaptic proteins; and increased excitatory synapse number. BD10-2 also had potentially favorable effects on LTP-dependent complement pathway and synaptic gene transcription. DISCUSSION: BD10-2 prevented APPL/S/Aß-associated memory and LTP deficits, reduced abnormalities in synapse-related signaling and activity-dependent transcription of synaptic genes, and bolstered transcriptional changes associated with microglial immune response. HIGHLIGHTS: Small molecule modulation of tropomyosin related kinase B (TrkB) and C (TrkC) restores long-term potentiation (LTP) and behavior in an Alzheimer's disease (AD) model. Modulation of TrkB and TrkC regulates synaptic activity-dependent transcription. TrkB and TrkC receptors are candidate targets for translational therapeutics. Electrophysiology combined with transcriptomics elucidates synaptic restoration. LTP identifies neuron and microglia AD-relevant human-mouse co-expression modules.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Mice, Transgenic , Microglia , Receptor, trkB , Synapses , Animals , Alzheimer Disease/drug therapy , Mice , Receptor, trkB/metabolism , Microglia/drug effects , Microglia/metabolism , Synapses/drug effects , Long-Term Potentiation/drug effects , Receptor, trkC/metabolism , Receptor, trkC/genetics , Transcriptome/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Neuronal Plasticity/drug effects , Male
3.
Nat Neurosci ; 27(5): 873-885, 2024 May.
Article in English | MEDLINE | ID: mdl-38539014

ABSTRACT

Human genetics implicate defective myeloid responses in the development of late-onset Alzheimer disease. A decline in peripheral and brain myeloid metabolism, triggering maladaptive immune responses, is a feature of aging. The role of TREM1, a pro-inflammatory factor, in neurodegenerative diseases is unclear. Here we show that Trem1 deficiency prevents age-dependent changes in myeloid metabolism, inflammation and hippocampal memory function in mice. Trem1 deficiency rescues age-associated declines in ribose 5-phosphate. In vitro, Trem1-deficient microglia are resistant to amyloid-ß42 oligomer-induced bioenergetic changes, suggesting that amyloid-ß42 oligomer stimulation disrupts homeostatic microglial metabolism and immune function via TREM1. In the 5XFAD mouse model, Trem1 haploinsufficiency prevents spatial memory loss, preserves homeostatic microglial morphology, and reduces neuritic dystrophy and changes in the disease-associated microglial transcriptomic signature. In aging APPSwe mice, Trem1 deficiency prevents hippocampal memory decline while restoring synaptic mitochondrial function and cerebral glucose uptake. In postmortem Alzheimer disease brain, TREM1 colocalizes with Iba1+ cells around amyloid plaques and its expression is associated with Alzheimer disease clinical and neuropathological severity. Our results suggest that TREM1 promotes cognitive decline in aging and in the context of amyloid pathology.


Subject(s)
Aging , Alzheimer Disease , Disease Models, Animal , Energy Metabolism , Microglia , Triggering Receptor Expressed on Myeloid Cells-1 , Animals , Mice , Aging/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Cognition/physiology , Energy Metabolism/physiology , Hippocampus/metabolism , Hippocampus/pathology , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/genetics
4.
bioRxiv ; 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37781573

ABSTRACT

Introduction: TrkB and TrkC receptor signaling promotes synaptic plasticity and interacts with pathways affected by amyloid-ß (Aß)-toxicity. Upregulating TrkB/C signaling could reduce Alzheimer's disease (AD)-related degenerative signaling, memory loss, and synaptic dysfunction. Methods: PTX-BD10-2 (BD10-2), a small molecule TrkB/C receptor partial agonist, was orally administered to aged London/Swedish-APP mutant mice (APP L/S ) and wild-type controls (WT). Effects on memory and hippocampal long-term potentiation (LTP) were assessed using electrophysiology, behavioral studies, immunoblotting, immunofluorescence staining, and RNA-sequencing. Results: Memory and LTP deficits in APP L/S mice were attenuated by treatment with BD10-2. BD10-2 prevented aberrant AKT, CaMKII, and GLUA1 phosphorylation, and enhanced activity-dependent recruitment of synaptic proteins. BD10-2 also had potentially favorable effects on LTP-dependent complement pathway and synaptic gene transcription. Conclusions: BD10-2 prevented APP L/S /Aß-associated memory and LTP deficits, reduced abnormalities in synapse-related signaling and activity-dependent transcription of synaptic genes, and bolstered transcriptional changes associated with microglial immune response.

5.
Nat Metab ; 3(9): 1242-1258, 2021 09.
Article in English | MEDLINE | ID: mdl-34504353

ABSTRACT

Mitochondria are the main site for generating reactive oxygen species, which are key players in diverse biological processes. However, the molecular pathways of redox signal transduction from the matrix to the cytosol are poorly defined. Here we report an inside-out redox signal of mitochondria. Cysteine oxidation of MIC60, an inner mitochondrial membrane protein, triggers the formation of disulfide bonds and the physical association of MIC60 with Miro, an outer mitochondrial membrane protein. The oxidative structural change of this membrane-crossing complex ultimately elicits cellular responses that delay mitophagy, impair cellular respiration and cause oxidative stress. Blocking the MIC60-Miro interaction or reducing either protein, genetically or pharmacologically, extends lifespan and health-span of healthy fruit flies, and benefits multiple models of Parkinson's disease and Friedreich's ataxia. Our discovery provides a molecular basis for common treatment strategies against oxidative stress.


Subject(s)
Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Signal Transduction , Animals , Humans , Oxidation-Reduction , Protein Conformation , Reactive Oxygen Species/metabolism
6.
Nature ; 590(7844): 122-128, 2021 02.
Article in English | MEDLINE | ID: mdl-33473210

ABSTRACT

Ageing is characterized by the development of persistent pro-inflammatory responses that contribute to atherosclerosis, metabolic syndrome, cancer and frailty1-3. The ageing brain is also vulnerable to inflammation, as demonstrated by the high prevalence of age-associated cognitive decline and Alzheimer's disease4-6. Systemically, circulating pro-inflammatory factors can promote cognitive decline7,8, and in the brain, microglia lose the ability to clear misfolded proteins that are associated with neurodegeneration9,10. However, the underlying mechanisms that initiate and sustain maladaptive inflammation with ageing are not well defined. Here we show that in ageing mice myeloid cell bioenergetics are suppressed in response to increased signalling by the lipid messenger prostaglandin E2 (PGE2), a major modulator of inflammation11. In ageing macrophages and microglia, PGE2 signalling through its EP2 receptor promotes the sequestration of glucose into glycogen, reducing glucose flux and mitochondrial respiration. This energy-deficient state, which drives maladaptive pro-inflammatory responses, is further augmented by a dependence of aged myeloid cells on glucose as a principal fuel source. In aged mice, inhibition of myeloid EP2 signalling rejuvenates cellular bioenergetics, systemic and brain inflammatory states, hippocampal synaptic plasticity and spatial memory. Moreover, blockade of peripheral myeloid EP2 signalling is sufficient to restore cognition in aged mice. Our study suggests that cognitive ageing is not a static or irrevocable condition but can be reversed by reprogramming myeloid glucose metabolism to restore youthful immune functions.


Subject(s)
Aging/metabolism , Cognitive Dysfunction/prevention & control , Myeloid Cells/metabolism , Adult , Aged , Aging/drug effects , Aging/genetics , Animals , Cell Respiration , Cells, Cultured , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/genetics , Dinoprostone/metabolism , Energy Metabolism , Glucose/metabolism , Glycogen/biosynthesis , Glycogen/metabolism , Humans , Inflammation/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Memory Disorders/drug therapy , Mice , Microglia/drug effects , Microglia/immunology , Microglia/metabolism , Mitochondria/metabolism , Myeloid Cells/immunology , Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors , Receptors, Prostaglandin E, EP2 Subtype/deficiency , Receptors, Prostaglandin E, EP2 Subtype/genetics , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Signal Transduction/drug effects , Spatial Memory/drug effects
8.
Immunity ; 53(5): 897-899, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33207212

ABSTRACT

The molecular mechanisms that restore microglial quiescence after acute stimulation remain largely unexplored, unlike those that drive microglial activation. In this issue of Immunity, Shemer et al. discover that the microglial IL-10 receptor counteracts the pro-inflammatory effects of TNF to allow restoration of microglial quiescence after peripheral endotoxin challenge.


Subject(s)
Interleukin-10 , Microglia , Endotoxins
9.
Brain ; 143(3): 932-943, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32065223

ABSTRACT

Parkinson's disease is the second most common neurodegenerative disease after Alzheimer's disease and affects 1% of the population above 60 years old. Although Parkinson's disease commonly manifests with motor symptoms, a majority of patients with Parkinson's disease subsequently develop cognitive impairment, which often progresses to dementia, a major cause of morbidity and disability. Parkinson's disease is characterized by α-synuclein accumulation that frequently associates with amyloid-ß and tau fibrils, the hallmarks of Alzheimer's disease neuropathological changes; this co-occurrence suggests that onset of cognitive decline in Parkinson's disease may be associated with appearance of pathological amyloid-ß and/or tau. Recent studies have highlighted the appearance of the soluble form of the triggering receptor expressed on myeloid cells 2 (sTREM2) receptor in CSF during development of Alzheimer's disease. Given the known association of microglial activation with advancing Parkinson's disease, we investigated whether CSF and/or plasma sTREM2 differed between CSF biomarker-defined Parkinson's disease participant subgroups. In this cross-sectional study, we examined 165 participants consisting of 17 cognitively normal elderly subjects, 45 patients with Parkinson's disease with no cognitive impairment, 86 with mild cognitive impairment, and 17 with dementia. Stratification of subjects by CSF amyloid-ß and tau levels revealed that CSF sTREM2 concentrations were elevated in Parkinson's disease subgroups with a positive tau CSF biomarker signature, but not in Parkinson's disease subgroups with a positive CSF amyloid-ß biomarker signature. These findings indicate that CSF sTREM2 could serve as a surrogate immune biomarker of neuronal injury in Parkinson's disease.


Subject(s)
Amyloid beta-Peptides/cerebrospinal fluid , Membrane Glycoproteins/blood , Membrane Glycoproteins/cerebrospinal fluid , Parkinson Disease/blood , Parkinson Disease/cerebrospinal fluid , Receptors, Immunologic/blood , tau Proteins/cerebrospinal fluid , Aged , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/blood , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/complications , Cross-Sectional Studies , Dementia/blood , Dementia/cerebrospinal fluid , Dementia/complications , Female , Humans , Male , Middle Aged , Parkinson Disease/classification , Parkinson Disease/complications
10.
J Neuroinflammation ; 17(1): 36, 2020 Jan 27.
Article in English | MEDLINE | ID: mdl-31987040

ABSTRACT

BACKGROUND: Out of the myriad of complications associated with septic shock, septic-associated encephalopathy (SAE) carries a significant risk of morbidity and mortality. Blood-brain-barrier (BBB) impairment, which subsequently leads to increased vascular permeability, has been associated with neuronal injury in sepsis. Thus, preventing BBB damage is an attractive therapeutic target. Mitochondrial dysfunction is an important contributor of sepsis-induced multi-organ system failure. More recently, mitochondrial dysfunction in endothelial cells has been implicated in mediating BBB failure in stroke, multiple sclerosis and in other neuroinflammatory disorders. Here, we focused on Drp1-mediated mitochondrial dysfunction in endothelial cells as a potential target to prevent BBB failure in sepsis. METHODS: We used lipopolysaccharide (LPS) to induce inflammation and BBB disruption in a cell culture as well as in murine model of sepsis. BBB disruption was assessed by measuring levels of key tight-junction proteins. Brain cytokines levels, oxidative stress markers, and activity of mitochondrial complexes were measured using biochemical assays. Astrocyte and microglial activation were measured using immunoblotting and qPCR. Transwell cultures of brain microvascular endothelial cells co-cultured with astrocytes were used to assess the effect of LPS on expression of tight-junction proteins, mitochondrial function, and permeability to fluorescein isothiocyanate (FITC) dextran. Finally, primary neuronal cultures exposed to LPS were assessed for mitochondrial dysfunction. RESULTS: LPS induced a strong brain inflammatory response and oxidative stress in mice which was associated with increased Drp1 activation and mitochondrial localization. Particularly, Drp1-(Fission 1) Fis1-mediated oxidative stress also led to an increase in expression of vascular permeability regulators in the septic mice. Similarly, mitochondrial defects mediated via Drp1-Fis1 interaction in primary microvascular endothelial cells were associated with increased BBB permeability and loss of tight-junctions after acute LPS injury. P110, an inhibitor of Drp1-Fis1 interaction, abrogated these defects, thus indicating a critical role for this interaction in mediating sepsis-induced brain dysfunction. Finally, LPS mediated a direct toxic effect on primary cortical neurons, which was abolished by P110 treatment. CONCLUSIONS: LPS-induced impairment of BBB appears to be dependent on Drp1-Fis1-mediated mitochondrial dysfunction. Inhibition of mitochondrial dysfunction with P110 may have potential therapeutic significance in septic encephalopathy.


Subject(s)
Blood-Brain Barrier/pathology , Brain Diseases/pathology , Dynamins/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Sepsis/pathology , Animals , Brain Diseases/chemically induced , Cells, Cultured , Cytokines/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Lipopolysaccharides , Macrophage Activation , Mice , Mice, Inbred BALB C , Neuroglia/pathology , Oxidative Stress , Primary Cell Culture , Tight Junction Proteins/biosynthesis , Tight Junction Proteins/genetics
11.
Acta Neuropathol Commun ; 7(1): 190, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31829281

ABSTRACT

Aldehyde dehydrogenase 2 deficiency (ALDH2*2) causes facial flushing in response to alcohol consumption in approximately 560 million East Asians. Recent meta-analysis demonstrated the potential link between ALDH2*2 mutation and Alzheimer's Disease (AD). Other studies have linked chronic alcohol consumption as a risk factor for AD. In the present study, we show that fibroblasts of an AD patient that also has an ALDH2*2 mutation or overexpression of ALDH2*2 in fibroblasts derived from AD patients harboring ApoE ε4 allele exhibited increased aldehydic load, oxidative stress, and increased mitochondrial dysfunction relative to healthy subjects and exposure to ethanol exacerbated these dysfunctions. In an in vivo model, daily exposure of WT mice to ethanol for 11 weeks resulted in mitochondrial dysfunction, oxidative stress and increased aldehyde levels in their brains and these pathologies were greater in ALDH2*2/*2 (homozygous) mice. Following chronic ethanol exposure, the levels of the AD-associated protein, amyloid-ß, and neuroinflammation were higher in the brains of the ALDH2*2/*2 mice relative to WT. Cultured primary cortical neurons of ALDH2*2/*2 mice showed increased sensitivity to ethanol and there was a greater activation of their primary astrocytes relative to the responses of neurons or astrocytes from the WT mice. Importantly, an activator of ALDH2 and ALDH2*2, Alda-1, blunted the ethanol-induced increases in Aß, and the neuroinflammation in vitro and in vivo. These data indicate that impairment in the metabolism of aldehydes, and specifically ethanol-derived acetaldehyde, is a contributor to AD associated pathology and highlights the likely risk of alcohol consumption in the general population and especially in East Asians that carry ALDH2*2 mutation.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial/genetics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Ethanol/toxicity , Aged , Aged, 80 and over , Aldehydes , Animals , Cells, Cultured , Enzyme Activation/drug effects , Enzyme Activation/genetics , Ethanol/administration & dosage , Female , Fibroblasts/drug effects , Fibroblasts/pathology , Gene Knock-In Techniques , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/pathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Mutation/drug effects , Mutation/genetics
12.
Sci Transl Med ; 11(519)2019 11 20.
Article in English | MEDLINE | ID: mdl-31748226

ABSTRACT

Diffuse midline gliomas (DMGs) are universally lethal malignancies occurring chiefly during childhood and involving midline structures of the central nervous system, including thalamus, pons, and spinal cord. These molecularly related cancers are characterized by high prevalence of the histone H3K27M mutation. In search of effective therapeutic options, we examined multiple DMG cultures in sequential quantitative high-throughput screens (HTS) of 2706 approved and investigational drugs. This effort generated 19,936 single-agent dose responses that inspired a series of HTS-enabled drug combination assessments encompassing 9195 drug-drug examinations. Top combinations were validated across patient-derived cell cultures representing the major DMG genotypes. In vivo testing in patient-derived xenograft models validated the combination of the multi-histone deacetylase (HDAC) inhibitor panobinostat and the proteasome inhibitor marizomib as a promising therapeutic approach. Transcriptional and metabolomic surveys revealed substantial alterations to key metabolic processes and the cellular unfolded protein response after treatment with panobinostat and marizomib. Mitigation of drug-induced cytotoxicity and basal mitochondrial respiration with exogenous application of nicotinamide mononucleotide (NMN) or exacerbation of these phenotypes when blocking nicotinamide adenine dinucleotide (NAD+) production via nicotinamide phosphoribosyltransferase (NAMPT) inhibition demonstrated that metabolic catastrophe drives the combination-induced cytotoxicity. This study provides a comprehensive single-agent and combinatorial drug screen for DMG and identifies concomitant HDAC and proteasome inhibition as a promising therapeutic strategy that underscores underrecognized metabolic vulnerabilities in DMG.


Subject(s)
Brain Neoplasms/drug therapy , Drug Evaluation, Preclinical , Glioma/drug therapy , High-Throughput Screening Assays/methods , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Stem Neoplasms/drug therapy , Cell Death , Cell Line, Tumor , Drug Synergism , Female , Glioma/genetics , Glioma/metabolism , Humans , Lactones/pharmacology , Lactones/therapeutic use , Male , Metabolomics , Mice , Panobinostat/pharmacology , Panobinostat/therapeutic use , Pyrroles/pharmacology , Pyrroles/therapeutic use , Reproducibility of Results , Sequence Analysis, RNA , Transcription, Genetic/drug effects , Xenograft Model Antitumor Assays
13.
Nat Neurosci ; 22(10): 1635-1648, 2019 10.
Article in English | MEDLINE | ID: mdl-31551592

ABSTRACT

In neurodegenerative diseases, debris of dead neurons are thought to trigger glia-mediated neuroinflammation, thus increasing neuronal death. Here we show that the expression of neurotoxic proteins associated with these diseases in microglia alone is sufficient to directly trigger death of naive neurons and to propagate neuronal death through activation of naive astrocytes to the A1 state. Injury propagation is mediated, in great part, by the release of fragmented and dysfunctional microglial mitochondria into the neuronal milieu. The amount of damaged mitochondria released from microglia relative to functional mitochondria and the consequent neuronal injury are determined by Fis1-mediated mitochondrial fragmentation within the glial cells. The propagation of the inflammatory response and neuronal cell death by extracellular dysfunctional mitochondria suggests a potential new intervention for neurodegeneration-one that inhibits mitochondrial fragmentation in microglia, thus inhibiting the release of dysfunctional mitochondria into the extracellular milieu of the brain, without affecting the release of healthy neuroprotective mitochondria.


Subject(s)
Astrocytes/pathology , Inflammation/pathology , Microglia/pathology , Mitochondria/pathology , Nerve Degeneration/pathology , Animals , Cell Death , Dynamins/genetics , Extracellular Space , Humans , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/genetics , Neurons/pathology , Rats , Rats, Sprague-Dawley
14.
Nat Immunol ; 20(8): 1023-1034, 2019 08.
Article in English | MEDLINE | ID: mdl-31263278

ABSTRACT

Stroke is a multiphasic process in which initial cerebral ischemia is followed by secondary injury from immune responses to ischemic brain components. Here we demonstrate that peripheral CD11b+CD45+ myeloid cells magnify stroke injury via activation of triggering receptor expressed on myeloid cells 1 (TREM1), an amplifier of proinflammatory innate immune responses. TREM1 was induced within hours after stroke peripherally in CD11b+CD45+ cells trafficking to ischemic brain. TREM1 inhibition genetically or pharmacologically improved outcome via protective antioxidant and anti-inflammatory mechanisms. Positron electron tomography imaging using radiolabeled antibody recognizing TREM1 revealed elevated TREM1 expression in spleen and, unexpectedly, in intestine. In the lamina propria, noradrenergic-dependent increases in gut permeability induced TREM1 on inflammatory Ly6C+MHCII+ macrophages, further increasing epithelial permeability and facilitating bacterial translocation across the gut barrier. Thus, following stroke, peripheral TREM1 induction amplifies proinflammatory responses to both brain-derived and intestinal-derived immunogenic components. Critically, targeting this specific innate immune pathway reduces cerebral injury.


Subject(s)
Brain/immunology , Intestinal Mucosa/immunology , Macrophages/immunology , Neutrophils/immunology , Stroke/pathology , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Animals , Brain/cytology , Cell Line , Immunity, Innate/immunology , Inflammation/pathology , Intestinal Mucosa/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , RAW 264.7 Cells
16.
Int J Radiat Oncol Biol Phys ; 104(1): 222-223, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30967231
17.
J Transl Med ; 17(1): 31, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30658666

ABSTRACT

Botticelli et al. proposed the activity of indoleamine-2,3-dioxygenase 1 (IDO) as a potential mechanism and predictive marker for primary resistance against anti-PD-1 treatment in the context of non-small cell lung cancer. However, there are a few points for the authors to address in order to strengthen their claims. First, there are many enzymes that modulate the kynurenine to tryptophan ratio, thereby calling into question their use of the ratio as a proxy for IDO activity. Second, the authors could compare IDO to other proposed markers in the literature, providing a better understanding of its predictive value.


Subject(s)
Biomarkers, Tumor/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Programmed Cell Death 1 Receptor/metabolism , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/therapy , Drug Resistance, Neoplasm , Humans , Kynurenine/metabolism , Lung Neoplasms/enzymology , Lung Neoplasms/therapy
18.
Nat Immunol ; 20(1): 50-63, 2019 01.
Article in English | MEDLINE | ID: mdl-30478397

ABSTRACT

Recent advances highlight a pivotal role for cellular metabolism in programming immune responses. Here, we demonstrate that cell-autonomous generation of nicotinamide adenine dinucleotide (NAD+) via the kynurenine pathway (KP) regulates macrophage immune function in aging and inflammation. Isotope tracer studies revealed that macrophage NAD+ derives substantially from KP metabolism of tryptophan. Genetic or pharmacological blockade of de novo NAD+ synthesis depleted NAD+, suppressed mitochondrial NAD+-dependent signaling and respiration, and impaired phagocytosis and resolution of inflammation. Innate immune challenge triggered upstream KP activation but paradoxically suppressed cell-autonomous NAD+ synthesis by limiting the conversion of downstream quinolinate to NAD+, a profile recapitulated in aging macrophages. Increasing de novo NAD+ generation in immune-challenged or aged macrophages restored oxidative phosphorylation and homeostatic immune responses. Thus, KP-derived NAD+ operates as a metabolic switch to specify macrophage effector responses. Breakdown of de novo NAD+ synthesis may underlie declining NAD+ levels and rising innate immune dysfunction in aging and age-associated diseases.


Subject(s)
Aging/physiology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation/immunology , Macrophages/physiology , Mitochondria/metabolism , NAD/metabolism , Animals , Cells, Cultured , Homeostasis , Immunity, Innate , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Kynurenine/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Phosphorylation , Pentosyltransferases/genetics , Phagocytosis , Signal Transduction , Tryptophan/metabolism
20.
Clin Teach ; 15(5): 370-376, 2018 10.
Article in English | MEDLINE | ID: mdl-28805356

ABSTRACT

BACKGROUND: Although the proportion of ethnicities representing under-represented minorities in medicine (URM) in the general population has significantly increased, URM enrolment in medical schools within the USA has remained stagnant in recent years. METHODS: This study sought to examine the effect of an immersion in community medicine (ICM) programme on secondary school students' desire to enter the field of medicine and serve their communities. The authors asked all 69 ICM alumni to complete a 14-question survey consisting of six demographic, four programme and four career questions, rated on a Likert scale of 1 (completely disagree) to 5 (completely agree), coupled with optional free-text questions. Data were analysed using GraphPad prism and nvivo software. RESULTS: A total of 61 students responded, representing a response rate of 88.4 per cent, with a majority of respondents (73.7%) from URM backgrounds. An overwhelming majority of students agreed (with a Likert rating of 4 or 5) that the ICM programme increased their interest in becoming a physician (n = 56, 91.8%). Students reported shadowing patient-student-physician interactions to be the most useful (n = 60, 98.4%), and indicated that they felt that they would be more likely to lead to serving the local community as part of their future careers (n = 52, 85.3%). Of the students that were eligible to apply to medical school (n = 13), a majority (n = 11, 84.6%) have applied to medical school. URM enrolment in medical schools within the USA has remained stagnant in recent years DISCUSSION: Use of a community medicine immersion programme may help encourage secondary students from URM backgrounds to gain the confidence to pursue a career in medicine and serve their communities. Further examination of these programmes may yield novel insights into recruiting URM students to medicine.


Subject(s)
Career Choice , Community Medicine/organization & administration , Minority Groups/education , Schools/organization & administration , Adolescent , Cultural Diversity , Female , Humans , Male , Mentors , Minority Groups/psychology , Physical Examination , Residence Characteristics , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...