Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35563506

ABSTRACT

It is a longstanding question whether universality or specificity characterize the molecular dynamics underlying the glass transition of liquids. In particular, there is an ongoing debate to what degree the shape of dynamical susceptibilities is common to various molecular glass formers. Traditionally, results from dielectric spectroscopy and light scattering have dominated the discussion. Here, we show that nuclear magnetic resonance (NMR), primarily field-cycling relaxometry, has evolved into a valuable method, which provides access to both translational and rotational motions, depending on the probe nucleus. A comparison of 1H NMR results indicates that translation is more retarded with respect to rotation for liquids with fully established hydrogen-bond networks; however, the effect is not related to the slow Debye process of, for example, monohydroxy alcohols. As for the reorientation dynamics, the NMR susceptibilities of the structural (α) relaxation usually resemble those of light scattering, while the dielectric spectra of especially polar liquids have a different broadening, likely due to contributions from cross correlations between different molecules. Moreover, NMR relaxometry confirms that the excess wing on the high-frequency flank of the α-process is a generic relaxation feature of liquids approaching the glass transition. However, the relevance of this feature generally differs between various methods, possibly because of their different sensitivities to small-amplitude motions. As a major advantage, NMR is isotope specific; hence, it enables selective studies on a particular molecular entity or a particular component of a liquid mixture. Exploiting these possibilities, we show that the characteristic Cole-Davidson shape of the α-relaxation is retained in various ionic liquids and salt solutions, but the width parameter may differ for the components. In contrast, the low-frequency flank of the α-relaxation can be notably broadened for liquids in nanoscopic confinements. This effect also occurs in liquid mixtures with a prominent dynamical disparity in their components.


Subject(s)
Glass , Magnetic Resonance Imaging , Alcohols/chemistry , Animals , Hydrogen Bonding , Magnetic Resonance Spectroscopy/methods
2.
Phys Chem Chem Phys ; 22(16): 9014-9028, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32293628

ABSTRACT

Mixtures of glycerol and dimethyl sulfoxide (DMSO) are studied by dielectric spectroscopy (DS) and by 1H field-cycling (FC) NMR relaxometry in the entire concentration range and down to glass-forming temperatures (170-323 K). Molecular dynamics is accessed for 0 < xDMSO ≤ 0.64, at higher concentration phase separation occurs. The FC technique provides the frequency dependence of the spin-lattice relaxation rate which is transformed to the susceptibility representation and thus allows comparing NMR and DS results. The DS spectra virtually do not change with xDMSO and T, only the relaxation times become shorter. This is in contrast to the non-associated mixture toluene/quinaldine for which strong spectral changes occur. The FC relaxation spectra of glycerol in solution with DMSO or (deuterated) DMSO-d6 display a bimodal structure with a high-frequency part reflecting rotational and a low-frequency part reflecting translational dynamics. Regarding the rotational contribution in the glycerol/DMSO-d6 mixtures, no spectral change with xDMSO and T is observed. Yet, the non-deuterated mixture reveals a broader relaxation spectrum. Time constants τrot(T) probed by the two techniques complement each, a range 10-11 s < τ < 10 s is covered. The glass transition temperature Tg(xDMSO) is determined, yielding Tg = 149.5 ± 1 K of pure DMSO by extrapolation. Analysing the low-frequency FC NMR spectra allows to determine the diffusion coefficient Dtrans. Its logarithm shows a linear xDMSO-dependence as does lg τrot. The ratio Dtrans/Drot is independent of xDMSO and its low value indicates large separation of translation and rotation. The corresponding unphysically small hydrodynamic radius indicates strong failure of Stokes-Einstein-Debye relation. Such anomaly is taken as characteristics of a 3d hydrogen-bonded network. We conclude, although DMSO is an aprotic liquid the molecule is continuously incorporated in the hydrogen network of glycerol. Both molecules display common dynamics, i.e., no decoupling of the component dynamics is found in contrast to quinaldine/toluene with a similar Tg difference of its components.

SELECTION OF CITATIONS
SEARCH DETAIL
...