Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Molecules ; 27(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35889346

ABSTRACT

Amaryllidaceae is a significant source of bioactive phytochemicals with a strong propensity to develop new drugs. The genera Allium, Tulbaghia, Cyrtanthus and Crinum biosynthesize novel alkaloids and other phytochemicals with traditional and pharmacological uses. Amaryllidaceae biomolecules exhibit multiple pharmacological activities such as antioxidant, antimicrobial, and immunomodulatory effects. Traditionally, natural products from Amaryllidaceae are utilized to treat non-communicable and infectious human diseases. Galanthamine, a drug from this family, is clinically relevant in treating the neurocognitive disorder, Alzheimer's disease, which underscores the importance of the Amaryllidaceae alkaloids. Although Amaryllidaceae provide a plethora of biologically active compounds, there is tardiness in their development into clinically pliable medicines. Other genera, including Cyrtanthus and Tulbaghia, have received little attention as potential sources of promising drug candidates. Given the reciprocal relationship of the increasing burden of human diseases and limited availability of medicinal therapies, more rapid drug discovery and development are desirable. To expedite clinically relevant drug development, we present here evidence on bioactive compounds from the genera Allium, Tulgbaghia, Cyrtanthus and Crinum and describe their traditional and pharmacological applications.


Subject(s)
Allium , Amaryllidaceae Alkaloids , Amaryllidaceae , Crinum , Amaryllidaceae Alkaloids/chemistry , Amaryllidaceae Alkaloids/pharmacology , Crinum/chemistry , Humans , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology
2.
Antibiotics (Basel) ; 11(3)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35326749

ABSTRACT

Antimicrobial resistance is an exigent public health concern owing to the emergence of novel strains of human resistant pathogens and the concurrent rise in multi-drug resistance. An influx of new antimicrobials is urgently required to improve the treatment outcomes of infectious diseases and save lives. Plant metabolites and bioactive compounds from chemical synthesis have found their efficacy to be dwindling, despite some of them being developed as drugs and used to treat human infections for several decades. Microorganisms are considered untapped reservoirs for promising biomolecules with varying structural and functional antimicrobial activity. The advent of cost-effective and convenient model organisms, state-of-the-art molecular biology, omics technology, and machine learning has enhanced the bioprospecting of novel antimicrobial drugs and the identification of new drug targets. This review summarizes antimicrobial compounds isolated from microorganisms and reports on the modern tools and strategies for exploiting promising antimicrobial drug candidates. The investigation identified a plethora of novel compounds from microbial sources with excellent antimicrobial activity against disease-causing human pathogens. Researchers could maximize the use of novel model systems and advanced biomolecular and computational tools in exploiting lead antimicrobials, consequently ameliorating antimicrobial resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...