Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 8(1): 627-630, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-28451210

ABSTRACT

A sequence of regio- and stereoselective carbometalation followed by oxidation of ynamides leads to stereodefined fully substituted enolates that subsequently react with various functionalized allyl bromide reagents to provide the expected products possessing an enantiomerically pure quaternary carbon stereocentre in the α-position to the carbonyl group in excellent yields and enantiomeric ratios after cleavage of the oxazolidinone moiety. Three new bonds are formed in a single-pot operation.

2.
Chem Commun (Camb) ; 50(84): 12597-611, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25054432

ABSTRACT

Reactions that involve metal enolate species are amongst the most versatile carbon-carbon bond forming processes available to synthetic chemists. Enolate species are involved in a multitude of powerful applications in asymmetric organic synthesis, but the generation of fully substituted enolates in a geometrically defined form is not easily achieved especially in acyclic systems. In this Feature Article we focus on the most prominent examples reported in the literature describing the formation of highly diastereo- and enantiomerically enriched quaternary stereocentres in acyclic molecules derived from stereodefined non-cyclic trisubstituted metal enolates.

3.
J Am Chem Soc ; 136(7): 2682-94, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24512113

ABSTRACT

In the past few decades, it has become clear that asymmetric catalysis is one of the most powerful methods for the construction of carbon-carbon as well as carbon-heteroatom bonds in a stereoselective manner. However, when structural complexity increases (i.e., all-carbon quaternary stereogenic center), the difficulty in reaching the desired adducts through asymmetric catalytic reactions leads to a single carbon-carbon bond-forming event per chemical step between two components. Issues of efficiency and convergence should therefore be addressed to avoid extraneous chemical steps. In this Perspective, we present approaches that tackle the stimulating problem of efficiency while answering interesting synthetic challenges. Ideally, if one could create all-carbon quaternary stereogenic centers via the creation of several new carbon-carbon bonds in an acyclic system and in a single-pot operation from simple precursors, it would certainly open new horizons toward solving the synthetic problems. Even more important for any further design, the presence of polyreactive intermediates in synthesis (bismetalated, carbenoid, and oxenoids species) becomes now an indispensable tool, as it creates consecutively the same number of carbon-carbon bonds as in a multi-step process, but in a single-pot operation.

4.
Org Biomol Chem ; 12(10): 1535-46, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24477293

ABSTRACT

Experimental and theoretical studies of metalated peroxides confirmed their unique properties as oxenoids (electrophilic oxidants) allowing for a highly selective and efficient oxidation processes of nucleophilic organometallic species. In this short review we present the most prominent examples of the application of this class of reagents towards organic synthesis.

5.
Beilstein J Org Chem ; 9: 526-32, 2013.
Article in English | MEDLINE | ID: mdl-23616793

ABSTRACT

The carbocupration reactions of heterosubstituted alkynes allow the regio- and stereoselective formation of vinyl organometallic species. N-Alkynylamides (ynamides) are particularly useful substrates for the highly regioselective carbocupration reaction, as they lead to the stereodefined formation of vinylcopper species geminated to the amide moiety. The latter species are involved in numerous synthetically useful transformations leading to valuable building blocks in organic synthesis. Here we describe in full the results of our studies related to the carbometallation reactions of N-alkynylamides.

6.
Nat Protoc ; 8(4): 749-54, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23518666

ABSTRACT

This protocol describes a new approach for the preparation of stereodefined trisubstituted chiral enolate species, avoiding conventional asymmetric enolization of carbonyl compounds. This protocol was developed as a single-flask synthetic sequence and therefore does not require isolation or purification of intermediate compounds. The sequence starts from a regioselective carbocupration reaction of readily accessible chiral ynamides; this is followed by oxidation of the generated vinylcuprate with a commonly available oxidizing reagent (tert-butyl hydroperoxide) in order to generate an enolate that completely retains its configuration. This synthetic protocol has been applied to the preparation of aldol and Mannich-type adducts. The procedure reported here requires a simple reaction setup commonly available in all synthetic laboratories and takes ∼6 h for completion and 2 h for isolation and purification. Final products are valuable diastereomerically and enantiomerically enriched building blocks for organic synthesis containing all-carbon quaternary stereocenters in acyclic systems.


Subject(s)
Aldehydes/chemical synthesis , Carbon/chemistry , Chemistry Techniques, Synthetic , Aldehydes/chemistry , Molecular Conformation , Oxidation-Reduction , Stereoisomerism , tert-Butylhydroperoxide/chemistry
7.
Nature ; 490(7421): 522-6, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-23099407

ABSTRACT

The formation of all-carbon quaternary stereocentres in acyclic systems is one of the most difficult contemporary challenges in modern synthetic organic chemistry. Particularly challenging is the preparation of all-carbon quaternary stereocentres in aldol adducts; this difficulty is problematic because the aldol reaction represents one of the most valuable chemical transformations in organic synthesis. The main problem that limits the formation of these stereocentres is the absence of an efficient method of preparing stereodefined trisubstituted enolates in acyclic systems. Here we describe a different approach that involves the formation of two new stereogenic centres--including the all-carbon quaternary one--via a combined carbometalation-oxidation reaction of an organocuprate to give a stereodefined trisubstituted enolate. We use this method to generate a series of aldol and Mannich products from ynamides with excellent diastereomeric and enantiomeric ratios and moderate yields.

SELECTION OF CITATIONS
SEARCH DETAIL
...