Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Spine J ; 23(7): 1407-13, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24619606

ABSTRACT

PURPOSE: Axial loading of the spine while supine, simulating upright posture, decreases intervertebral disc (IVD) height and lumbar length and increases lumbar lordosis. The purpose of this study is to measure the adult lumbar spine's response to upright posture and a backpack load using upright magnetic resonance imaging (MRI). We hypothesize that higher spinal loads, while upright and with a backpack, will compress lumbar length and IVD height as well as decrease lumbar lordosis. METHODS: Six volunteers (45 ± 6 years) underwent 0.6 T MRI scans of the lumbar spine while supine, upright, and upright with a 10 % body weight (BW) backpack. Main outcomes were IVD height, lumbar spinal length (distance between anterior-superior corners of L1 and S1), and lumbar lordosis (Cobb angle between the superior endplates of L1 and S1). RESULTS: The 10 % BW load significantly compressed the L4-L5 and L5-S1 IVDs relative to supine (p < 0.05). The upright and upright plus 10 % BW backpack conditions significantly compressed the anterior height of L5-S1 relative to supine (p < 0.05), but did not significantly change the lumbar length or lumbar lordosis. CONCLUSIONS: The L4-L5 and L5-S1 IVDs compress, particularly anteriorly, when transitioning from supine to upright position with a 10 % BW backpack. This study is the first radiographic analysis to describe the adult lumbar spine wearing common backpack loads. The novel upright MRI protocol described allows for functional, in vivo, loaded measurements of the spine that enables the study of spinal biomechanics and therapeutic interventions.


Subject(s)
Intervertebral Disc/physiology , Lumbar Vertebrae/physiology , Magnetic Resonance Imaging , Posture/physiology , Weight-Bearing/physiology , Biomechanical Phenomena , Female , Humans , Male , Middle Aged
2.
J Transl Med ; 8: 125, 2010 Nov 26.
Article in English | MEDLINE | ID: mdl-21108848

ABSTRACT

BACKGROUND: Magnetic resonance imaging has been used in the diagnosis of human prion diseases such as sCJD and vCJD, but patients are scanned only when clinical signs appear, often at the late stage of disease. This study attempts to answer the questions "Could MRI detect prion diseases before clinical symptoms appear?, and if so, with what confidence?" METHODS: Scrapie, the prion disease of sheep, was chosen for the study because sheep can fit into a human sized MRI scanner (and there were no large animal MRI scanners at the time of this study), and because the USDA had, at the time of the study, a sizeable sample of scrapie exposed sheep, which we were able to use for this purpose. 111 genetically susceptible sheep that were naturally exposed to scrapie were used in this study. RESULTS: Our MRI findings revealed no clear, consistent hyperintense or hypointense signal changes in the brain on either clinically affected or asymptomatic positive animals on any sequence. However, in all 37 PrPSc positive sheep (28 asymptomatic and 9 symptomatic), there was a greater ventricle to cerebrum area ratio on MRI compared to 74 PrPSc negative sheep from the scrapie exposed flock and 6 control sheep from certified scrapie free flocks as defined by immunohistochemistry (IHC). CONCLUSIONS: Our findings indicate that MRI imaging can detect diffuse cerebral atrophy in asymptomatic and symptomatic sheep infected with scrapie. Nine of these 37 positive sheep, including 2 one-year old animals, were PrPSc positive only in lymph tissues but PrPSc negative in the brain. This suggests either 1) that the cerebral atrophy/neuronal loss is not directly related to the accumulation of PrPSc within the brain or 2) that the amount of PrPSc in the brain is below the detectable limits of the utilized immunohistochemistry assay. The significance of these findings remains to be confirmed in human subjects with CJD.


Subject(s)
Brain/pathology , Creutzfeldt-Jakob Syndrome/pathology , Disease Models, Animal , Magnetic Resonance Imaging , Animals , Atrophy , Cerebral Ventricles/pathology , Humans , Organ Size , ROC Curve , Sheep
3.
Arterioscler Thromb Vasc Biol ; 23(2): 346-50, 2003 Feb 01.
Article in English | MEDLINE | ID: mdl-12588782

ABSTRACT

OBJECTIVE: MRI is being used to characterize the composition of atherosclerotic plaques. However, the resolution achievable using surface radiofrequency coils is limited by the signal to noise ratio. We studied the utility of a new intravascular (IV) MRI probe for high-resolution in vivo imaging of atherosclerotic lesions. METHODS AND RESULTS: Balloon-injured Watanabe heritable hyperlipidemic rabbits served as the experimental model of atherosclerosis. The newly developed IV MRI probe is 1.3 mm in diameter and can be positioned over a guidewire. MRI was performed with both an external phased-array coil and the IV MR coil. MR observations were correlated with histopathology. After MRI, the animals were killed and analysis of agreement between MR and histopathology was performed. The IV MR coil allows aortic images to be obtained with 156x156 micro m(2) in-plane resolution versus 352x352 micro m(2) when used with the external phased-array coil. No significant motion artifacts were noted, despite the continuation of arterial blood flow during image acquisition around the IV probe. The different components of the atherosclerotic lesions (lipid core and fibrous cap) were easily identified. There was an excellent agreement between MRI with the IV coil and histopathology by simple linear regression for both the mean wall thickness (r=0.88, slope 0.82, P<0.0001) and vessel wall area (r=0.86, slope 1.08, P<0.0001). CONCLUSIONS: The new nonobstructive design for this intravascular coil provides great promise for additional work in high-resolution MRI characterization of atherosclerotic plaques in vivo. The ability to position the probe with a guidewire allows its placement under fluoroscopic or MRI guidance, whereas its size is compatible with human coronary arteries.


Subject(s)
Arteriosclerosis/diagnosis , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Animals , Aorta, Abdominal/pathology , Aortic Diseases/diagnosis , Aortic Diseases/pathology , Arteriosclerosis/pathology , Diagnostic Imaging/instrumentation , Diagnostic Imaging/methods , Disease Models, Animal , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...