Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37224353

ABSTRACT

In light of the dynamic plasticity, nanosize, and energy efficiency of memristors, memristive reservoirs have attracted increasing attention in diverse fields of research recently. However, limited by deterministic hardware implementation, hardware reservoir adaptation is hard to realize. Existing evolutionary algorithms for evolving reservoirs are not designed for hardware implementation. They often ignore the circuit scalability and feasibility of the memristive reservoirs. In this work, based on the reconfigurable memristive units (RMUs), we first propose an evolvable memristive reservoir circuit that is capable of adaptive evolution for varying tasks, where the configuration signals of memristor are evolved directly avoiding the device variance of the memristors. Second, considering the feasibility and scalability of memristive circuits, we propose a scalable algorithm for evolving the proposed reconfigurable memristive reservoir circuit, where the reservoir circuit will not only be valid according to the circuit laws but also has the sparse topology, alleviating the scalability issue and ensuring the circuit feasibility during the evolution. Finally, we apply our proposed scalable algorithm to evolve the reconfigurable memristive reservoir circuits for a wave generation task, six prediction tasks, and one classification task. Through experiments, the feasibility and superiority of our proposed evolvable memristive reservoir circuit are demonstrated.

2.
IEEE Trans Neural Netw Learn Syst ; 34(9): 6029-6041, 2023 Sep.
Article in English | MEDLINE | ID: mdl-34932489

ABSTRACT

Learning from data streams that emerge from nonstationary environments has many real-world applications and poses various challenges. A key characteristic of such a task is the varying nature of target functions and data distributions over time (concept drifts). Most existing work relies solely on labeled data to adapt to concept drifts in classification problems. However, labeling all instances in a potentially life-long data stream is frequently prohibitively expensive, hindering such approaches. Therefore, we propose a novel algorithm to exploit unlabeled instances, which are typically plentiful and easily obtained. The algorithm is an online semisupervised radial basis function neural network (OSNN) with manifold-based training to exploit unlabeled data while tackling concept drifts in classification problems. OSNN employs a novel semisupervised learning vector quantization (SLVQ) to train network centers and learn meaningful data representations that change over time. It uses manifold learning on dynamic graphs to adjust the network weights. Our experiments confirm that OSNN can effectively use unlabeled data to elucidate underlying structures of data streams while its dynamic topology learning provides robustness to concept drifts.

3.
IEEE Trans Neural Netw Learn Syst ; 33(3): 1299-1309, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33351764

ABSTRACT

Data stream applications usually suffer from multiple types of concept drift. However, most existing approaches are only able to handle a subset of types of drift well, hindering predictive performance. We propose to use diversity as a framework to handle multiple types of drift. The motivation is that a diverse ensemble can not only contain models representing different concepts, which may be useful to handle recurring concepts, but also accelerate the adaptation to different types of concept drift. Our framework innovatively uses clustering in the model space to build a diverse ensemble and identify recurring concepts. The resulting diversity also accelerates adaptation to different types of drift where the new concept shares similarities with past concepts. Experiments with 20 synthetic and three real-world data streams containing different types of drift show that our diversity framework usually achieves similar or better prequential accuracy than existing approaches, especially when there are recurring concepts or when new concepts share similarities with past concepts.

4.
J Asthma ; 58(11): 1518-1527, 2021 11.
Article in English | MEDLINE | ID: mdl-32718193

ABSTRACT

OBJECTIVE: Acute exacerbations contribute significantly to the morbidity of asthma. Recent studies have shown that early detection and treatment of asthma exacerbations leads to improved outcomes. We aimed to develop a machine learning algorithm to detect severe asthma exacerbations using easily available daily monitoring data. METHODS: We analyzed daily peak expiratory flow and symptom scores recorded by participants in the SAKURA study (NCT00839800), an international multicentre randomized controlled trial comparing budesonide/formoterol as maintenance and reliever therapy versus budesonide/formoterol maintenance plus terbutaline as reliever, in adults with persistent asthma. The dataset consisted of 728,535 records of daily monitoring data in 2010 patients, with 576 severe exacerbation events. Data post-processing techniques included normalization, standardization, calculation of differences or slopes over time and the use of smoothing filters. Principal components analysis was used to reduce the large number of derived variables to a smaller number of linearly independent components. Logistic regression, decision tree, naïve Bayes, and perceptron algorithms were evaluated. Model accuracy was assessed using stratified cross-validation. The primary outcome was the detection of exacerbations on the same day or up to three days in the future. RESULTS: The best model used logistic regression with input variables derived from post-processed data using principal components analysis. This had an area under the receiver operating characteristic curve of 0.85, with a sensitivity of 90% and specificity of 83% for severe asthma exacerbations. CONCLUSION: Asthma exacerbations may be detected using machine learning algorithms applied to daily self-monitoring of peak expiratory flow and asthma symptoms.


Subject(s)
Asthma/diagnosis , Asthma/drug therapy , Bronchodilator Agents/administration & dosage , Budesonide/administration & dosage , Disease Progression , Formoterol Fumarate/administration & dosage , Home Care Services , Machine Learning , Monitoring, Physiologic , Terbutaline/administration & dosage , Drug Combinations , Female , Humans , Male , Middle Aged , Severity of Illness Index
5.
IEEE Trans Neural Netw Learn Syst ; 29(10): 4802-4821, 2018 10.
Article in English | MEDLINE | ID: mdl-29993955

ABSTRACT

As an emerging research topic, online class imbalance learning often combines the challenges of both class imbalance and concept drift. It deals with data streams having very skewed class distributions, where concept drift may occur. It has recently received increased research attention; however, very little work addresses the combined problem where both class imbalance and concept drift coexist. As the first systematic study of handling concept drift in class-imbalanced data streams, this paper first provides a comprehensive review of current research progress in this field, including current research focuses and open challenges. Then, an in-depth experimental study is performed, with the goal of understanding how to best overcome concept drift in online learning with class imbalance.

SELECTION OF CITATIONS
SEARCH DETAIL
...