Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Reports ; 16(5): 1210-1227, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33891870

ABSTRACT

Human embryonic stem cells cultured in 2D micropatterns with BMP4 differentiate into a radial arrangement of germ layers and extraembryonic cells. Single-cell transcriptomes demonstrate generation of cell types transcriptionally similar to their in vivo counterparts in Carnegie stage 7 human gastrula. Time-course analyses indicate sequential differentiation, where the epiblast arises by 12 h between the prospective ectoderm in the center and the cells initiating differentiation toward extraembryonic fates at the edge. Extraembryonic and mesendoderm precursors arise from the epiblast by 24 h, while nascent mesoderm, endoderm, and primordial germ cell-like cells form by 44 h. Dynamic changes in transcripts encoding signaling components support a BMP, WNT, and Nodal hierarchy underlying germ-layer specification conserved across mammals, and FGF and HIPPO pathways being active throughout differentiation. This work also provides a resource for mining genes and pathways expressed in a stereotyped 2D gastruloid model, common with other species or unique to human gastrulation.


Subject(s)
Cell Culture Techniques/methods , Cell Lineage/genetics , Gastrula/cytology , Gene Expression Regulation, Developmental , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Amnion/cytology , Cell Differentiation/genetics , Gastrulation , Germ Cells/cytology , Germ Layers/cytology , Humans , Mesoderm/cytology , Primitive Streak/embryology , Signal Transduction , Time Factors , Transcription, Genetic
2.
Med Image Anal ; 68: 101892, 2021 02.
Article in English | MEDLINE | ID: mdl-33285481

ABSTRACT

Accurately counting the number of cells in microscopy images is required in many medical diagnosis and biological studies. This task is tedious, time-consuming, and prone to subjective errors. However, designing automatic counting methods remains challenging due to low image contrast, complex background, large variance in cell shapes and counts, and significant cell occlusions in two-dimensional microscopy images. In this study, we proposed a new density regression-based method for automatically counting cells in microscopy images. The proposed method processes two innovations compared to other state-of-the-art density regression-based methods. First, the density regression model (DRM) is designed as a concatenated fully convolutional regression network (C-FCRN) to employ multi-scale image features for the estimation of cell density maps from given images. Second, auxiliary convolutional neural networks (AuxCNNs) are employed to assist in the training of intermediate layers of the designed C-FCRN to improve the DRM performance on unseen datasets. Experimental studies evaluated on four datasets demonstrate the superior performance of the proposed method.


Subject(s)
Microscopy , Neural Networks, Computer , Image Processing, Computer-Assisted
3.
Elife ; 92020 11 18.
Article in English | MEDLINE | ID: mdl-33206048

ABSTRACT

During mammalian gastrulation, germ layers arise and are shaped into the body plan while extraembryonic layers sustain the embryo. Human embryonic stem cells, cultured with BMP4 on extracellular matrix micro-discs, reproducibly differentiate into gastruloids, expressing markers of germ layers and extraembryonic cells in radial arrangement. Using single-cell RNA sequencing and cross-species comparisons with mouse, cynomolgus monkey gastrulae, and post-implantation human embryos, we reveal that gastruloids contain cells transcriptionally similar to epiblast, ectoderm, mesoderm, endoderm, primordial germ cells, trophectoderm, and amnion. Upon gastruloid dissociation, single cells reseeded onto micro-discs were motile and aggregated with the same but segregated from distinct cell types. Ectodermal cells segregated from endodermal and extraembryonic but mixed with mesodermal cells. Our work demonstrates that the gastruloid system models primate-specific features of embryogenesis, and that gastruloid cells exhibit evolutionarily conserved sorting behaviors. This work generates a resource for transcriptomes of human extraembryonic and embryonic germ layers differentiated in a stereotyped arrangement.


Subject(s)
Body Patterning , Embryonic Stem Cells/physiology , Gastrula/cytology , Transcription, Genetic/physiology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bone Morphogenetic Protein 4/pharmacology , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Line , Cells, Cultured , Gene Expression Regulation, Developmental , Humans , Transcription Factor AP-2/genetics , Transcription Factor AP-2/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism
4.
Biomaterials ; 95: 47-59, 2016 07.
Article in English | MEDLINE | ID: mdl-27116031

ABSTRACT

This work demonstrates the application of a 3D culture system-Cells-in-Gels-in-Paper (CiGiP)-in evaluating the metabolic response of lung cancer cells to ionizing radiation. The 3D tissue-like construct-prepared by stacking multiple sheets of paper containing cell-embedded hydrogels-generates a gradient of oxygen and nutrients that decreases monotonically in the stack. Separating the layers of the stack after exposure enabled analysis of the cellular response to radiation as a function of oxygen and nutrient availability; this availability is dictated by the distance between the cells and the source of oxygenated medium. As the distance between the cells and source of oxygenated media increased, cells show increased levels of hypoxia-inducible factor 1-alpha, decreased proliferation, and reduced sensitivity to ionizing radiation. Each of these cellular responses are characteristic of cancer cells observed in solid tumors. With this setup we were able to differentiate three isogenic variants of A549 cells based on their metabolic radiosensitivity; these three variants have known differences in their metastatic behavior in vivo. This system can, therefore, capture some aspects of radiosensitivity of populations of cancer cells related to mass-transport phenomenon, carry out systematic studies of radiation response in vitro that decouple effects from migration and proliferation of cells, and regulate the exposure of oxygen to subpopulations of cells in a tissue-like construct either before or after irradiation.


Subject(s)
Cell Culture Techniques/methods , Lung Neoplasms/radiotherapy , A549 Cells , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Humans , Hydrogels , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lung Neoplasms/metabolism , Oxygen/metabolism , Paper , Radiation Tolerance , Tumor Hypoxia/radiation effects
5.
Biomaterials ; 52: 262-71, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25818432

ABSTRACT

This work describes a 3D, paper-based assay that can isolate sub-populations of cells based on their invasiveness (i.e., distance migrated in a hydrogel) in a gradient of concentration of oxygen (O2). Layers of paper impregnated with a cell-compatible hydrogel are stacked and placed in a plastic holder to form the invasion assay. In most assays, the stack comprises a single layer of paper containing mammalian cells suspended in a hydrogel, sandwiched between multiple layers of paper containing only hydrogel. Cells in the stack consume and produce small molecules; these molecules diffuse throughout the stack to generate gradients in the stack, and between the stack and the bulk culture medium. Placing the cell-containing layer in different positions of the stack, or modifying the permeability of the holder to oxygen or proteins, alters the profile of the gradients within the stack. Physically separating the layers after culture isolates sub-populations of cells that migrated different distances, and enables their subsequent analysis or culture. Using this system, three independent cell lines derived from A549 cancer cells are shown to produce distinguishable migration behavior in a gradient of oxygen. This result is the first experimental demonstration that oxygen acts as a chemoattractant for cancer cells.


Subject(s)
Chemotaxis , Neoplasms/pathology , Oxygen/chemistry , Paper , Animals , Biological Assay , Cell Culture Techniques , Cell Line, Tumor , Cell Survival , Chemotactic Factors/chemistry , HEK293 Cells , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Male , Mice , Mice, Nude , Models, Theoretical , Neoplasm Invasiveness , Neoplasm Metastasis , Permeability , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...