Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(11)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32531962

ABSTRACT

This paper presents the design and the characterization of a portable laser triangulation measurement system for measuring gap and flush in the car body assembly process. Targeting Human in the Loop (HILT) operations in the manufacturing sector, and in line with the vision of human empowerment with Industry 4.0 technologies, the instrument embeds features to ease operators' activity and compensate possible misuse that could affect the robustness and the quality of data acquired. The device is based on a smartphone integrated with a miniaturized laser triangulation system installed in a cover. The device embodies additional sensors and control systems in order to guarantee operators' safety (switching on and off the laser line based on specific conditions), support operators during the measurement execution task, and optimize the image acquisition process for minimizing the uncertainty associated to the measurement. The smartphone performs on-board processing and allows Wi-Fi communication with the plant IT infrastructure. Compliance to Industry 4.0 requirements is guaranteed using OPC-UA (Open Platform Communications-Unified Architecture) communication protocol enabling the exchange of live data with the plant middleware. The smartphone provides also an advanced high-resolution color display and well proven and ergonomic human-machine interfaces, which have been fully exploited in the design. The paper introduces the system optical layout and then presents the algorithms implemented to realize the gap and flush measurement. The paper finally presents the calibration of the instrument and estimates its calibration uncertainty in laboratory conditions. Then it discusses how performance decays when the operator handles the instrument on a reference car body. Finally, it shows the analysis of uncertainty when the device is used on real car bodies of different colors in a production line. It is observed that the measurement uncertainty of the whole measurement chain (measurand + instrument + operator + uncontrolled environmental conditions) is larger than the instrument calibration uncertainty because the measurement process is affected by the operator and the variable conditions of the production line.

2.
Ultrasonics ; 81: 39-49, 2017 11.
Article in English | MEDLINE | ID: mdl-28577414

ABSTRACT

The paper presents a technique to measure the speed of sound in fuels based on pulse-echo ultrasound. The method is applied inside the test chamber of a Zeuch-type instrument used for indirect measurement of the injection rate (Mexus). The paper outlines the pulse-echo method, considering probe installation, ultrasound beam propagation inside the test chamber, typical signals obtained, as well as different processing algorithms. The method is validated in static conditions by comparing the experimental results to the NIST database both for water and n-Heptane. The ultrasonic system is synchronized to the injector so that time resolved samples of speed of sound can be successfully acquired during a series of injections. Results at different operating conditions in n-Heptane are shown. An uncertainty analysis supports the analysis of results and allows to validate the method. Experimental results show that the speed of sound variation during an injection event is less than 1%, so the Mexus model assumption to consider it constant during the injection is valid.

SELECTION OF CITATIONS
SEARCH DETAIL
...