Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(24): 11610-11622, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38855987

ABSTRACT

Nanomedicine aims to develop smart approaches for treating cancer and other diseases to improve patient survival and quality of life. Novel nanoparticles as nanodiamonds (NDs) represent promising candidates to overcome current limitations. In this study, NDs were functionalized with a 200 kDa hyaluronic acid-phospholipid conjugate (HA/DMPE), enhancing the stability of the nanoparticles in water-based solutions and selectivity for cancer cells overexpressing specific HA cluster determinant 44 (CD44) receptors. These nanoparticles were characterized by diffuse reflectance Fourier-transform infrared spectroscopy, Raman spectroscopy, and photoluminescence spectroscopy, confirming the efficacy of the functionalization process. Scanning electron microscopy was employed to evaluate the size distribution of the dry particles, while dynamic light scattering and zeta potential measurements were utilized to evaluate ND behavior in a water-based medium. Furthermore, the ND biocompatibility and uptake mediated by CD44 receptors in three different models of human adenocarcinoma cells were assessed by performing cytofluorimetric assay and confocal microscopy. HA-functionalized nanodiamonds demonstrated the advantage of active targeting in the presence of cancer cells expressing CD44 on the surface, suggesting higher drug delivery to tumors over non-tumor tissues. Even CD44-poorly expressing cancers could be targeted by the NDs, thanks to their good passive diffusion within cancer cells.


Subject(s)
Hyaluronan Receptors , Hyaluronic Acid , Nanodiamonds , Humans , Nanodiamonds/chemistry , Hyaluronic Acid/chemistry , Hyaluronan Receptors/metabolism , Cell Line, Tumor , Phospholipids/chemistry , Optical Imaging , Neoplasms/diagnostic imaging , Neoplasms/pathology , Neoplasms/metabolism
2.
Chem Commun (Camb) ; 60(28): 3782-3785, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38436137

ABSTRACT

We compared the H2 production from glycerol photoreforming for different TiO2 polymorphs, highlighting an increase of activity in the order Pt-rutile < Pt-P25 ≈ Pt-anatase < Pt-brookite with a different distribution of the reaction intermediates. We show that the highest ability to adsorb water and the different distribution of Pt active sites in brookite can positively influence its photoactivity.

3.
Int J Mol Sci ; 24(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068942

ABSTRACT

Nanoparticles are being increasingly studied to enhance radiation effects. Among them, nanodiamonds (NDs) are taken into great consideration due to their low toxicity, inertness, chemical stability, and the possibility of surface functionalization. The objective of this study is to explore the influence of the chemical/physical properties of NDs on cellular radiosensitivity to combined treatments with radiation beams of different energies. DAOY, a human radioresistant medulloblastoma cell line was treated with NDs-differing for surface modifications [hydrogenated (H-NDs) and oxidized (OX-NDs)], size, and concentration-and analysed for (i) ND internalization and intracellular localization, (ii) clonogenic survival after combined treatment with different radiation beam energies and (iii) DNA damage and apoptosis, to explore the nature of ND-radiation biological interactions. Results show that chemical/physical characteristics of NDs are crucial in determining cell toxicity, with hydrogenated NDs (H-NDs) decreasing either cellular viability when administered alone, or cell survival when combined with radiation, depending on ND size and concentration, while OX-NDs do not. Also, irradiation at high energy (γ-rays at 1.25 MeV), in combination with H-NDs, is more efficient in eliciting radiosensitisation when compared to irradiation at lower energy (X-rays at 250 kVp). Finally, the molecular mechanisms of ND radiosensitisation was addressed, demonstrating that cell killing is mediated by the induction of Caspase-3-dependent apoptosis that is independent to DNA damage. Identifying the optimal combination of ND characteristics and radiation energy has the potential to offer a promising therapeutic strategy for tackling radioresistant cancers using H-NDs in conjunction with high-energy radiation.


Subject(s)
Nanodiamonds , Neoplasms , Humans , Nanodiamonds/chemistry , Radiation Tolerance , Cell Survival , Neoplasms/radiotherapy
4.
Int J Mol Sci ; 24(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37511241

ABSTRACT

The study of molecular recognition patterns is crucial for understanding the interactions between inorganic (nano)particles and biomolecules. In this review we focus on hydroxyls (OH) exposed at the surface of oxide particles (OxPs) which can play a key role in molecular initiating events leading to OxPs toxicity. We discuss here the main analytical methods available to characterize surface OH from a quantitative and qualitative point of view, covering thermogravimetry, titration, ζ potential measurements, and spectroscopic approaches (NMR, XPS). The importance of modelling techniques (MD, DFT) for an atomistic description of the interactions between membranes/proteins and OxPs surfaces is also discussed. From this background, we distilled a new approach methodology (NAM) based on the combination of IR spectroscopy and bioanalytical assays to investigate the molecular interactions of OxPs with biomolecules and membranes. This NAM has been already successfully applied to SiO2 particles to identify the OH patterns responsible for the OxPs' toxicity and can be conceivably extended to other surface-hydroxylated oxides.


Subject(s)
Oxides , Silicon Dioxide , Oxides/chemistry , Silicon Dioxide/chemistry
5.
J Phys Chem C Nanomater Interfaces ; 127(1): 437-449, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36660096

ABSTRACT

Understanding NO x chemistry at titania nanoparticle surfaces is important for photocatalytic environmental remediation processes. We focus on this problem and put forward an experimental-computational approach based on vibrational spectroscopy grounds. Temperature-dependent IR experiments of NO x adsorption on shape-engineered nanoparticle (101) anatase surfaces are paired with power spectra obtained from Born-Oppenheimer trajectories. Then, the harmonic versus anharmonic vibrational frequencies of several adsorption scenarios are directly compared with the IR experiments. We conclude that molecules are adsorbed mainly by the N-end side and both the intermolecular interactions between adsorbed molecules and (NO)2 dimer formation are responsible for the main NO adsorption spectroscopic features. We also investigate the spectroscopy and the mechanism of formation on defective anatase surfaces of the long-lived greenhouse gas N2O.

6.
Biosens Bioelectron ; 220: 114876, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36375258

ABSTRACT

The investigation of secondary effects induced by ionizing radiation represents a new and ever-growing research field in radiobiology. This new paradigm cannot be investigated only using standard instrumentation and methodologies, but rather requires novel technologies to achieve significant progress. In this framework, we developed diamond-based sensors that allow simultaneous real-time measurements with a high spatial resolution of the secretory activity of a network of cells cultured on the device, as well as of the dose at which they are exposed during irradiation experiments. The devices were functionally characterized by testing both the above-mentioned detection schemes, namely: amperometric measurements of neurotransmitter release from excitable cells (such as dopamine or adrenaline) and dosimetric evaluation using different ionizing particles (alpha particle and X-ray photons). Finally, the sensors were employed to investigate the effects induced by X-rays on the exocytotic activity of PC12 neuroendocrine cells by monitoring the modulation of the dopamine release in real-time.


Subject(s)
Biosensing Techniques , Diamond , Dopamine , Biosensing Techniques/methods , Radiobiology , Radiation, Ionizing
7.
Int J Mol Sci ; 23(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36499757

ABSTRACT

Occupational exposure to quartz dust is associated with fatal diseases. Quartz dusts generated by mechanical fracturing are characterized by a broad range of micrometric to nanometric particles. The contribution of this nanometric fraction to the overall toxicity of quartz is still largely unexplored, primarily because of the strong electrostatic adhesion forces that prevent isolation of the nanofraction. Furthermore, fractured silica dust exhibits special surface features, namely nearly free silanols (NFS), which impart a membranolytic activity to quartz. Nanoquartz can be synthetized via bottom-up methods, but the surface chemistry of such crystals strongly differs from that of nanoparticles resulting from fracturing. Here, we report a top-down milling procedure to obtain a nanometric quartz that shares the key surface properties relevant to toxicity with fractured quartz. The ball milling was optimized by coupling the dry and wet milling steps, using water as a dispersing agent, and varying the milling times and rotational speeds. Nanoquartz with a strong tendency to form submicrometric agglomerates was obtained. The deagglomeration with surfactants or simulated body fluids was negligible. Partial lattice amorphization and a bimodal crystallite domain size were observed. A moderate membranolytic activity, which correlated with the number of NFS, signaled coherence with the previous toxicological data. A membranolytic nanoquartz for toxicological investigations was obtained.


Subject(s)
Occupational Exposure , Quartz , Quartz/chemistry , Dust , Silanes , Silicon Dioxide/chemistry
8.
Colloids Surf B Biointerfaces ; 217: 112620, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35738077

ABSTRACT

Three luminescent Eu-containing phosphate materials (Ca-doped europium phosphate monohydrate, Eu-doped carbonated-apatite, and europium phosphate monohydrate) were prepared and analyzed on the level of bulk structure and surface properties and compared to the biomimetic non-luminescent counterpart hydroxyapatite. Europium-containing phosphate materials exhibited nanosized dimensions but different luminescence emissions and luminescence lifetimes depending on their crystalline structures (i.e., lanthanide phosphate or apatites) and chemical composition. The introduction of Eu in the crystal lattice leads to a notable decrease in the overall Lewis acidity of the surface cationic sites detected by CO probing. Further, the mixed Eu/Ca-containing materials surfaces were found to be very similar to the reference hydroxyapatite in terms of water adsorption energy, while the pure europium phosphate resulted to have the notably higher energy values of direct interaction of water molecules with the surface cations with no detected propagation of this effect towards water overlayers.


Subject(s)
Europium , Luminescence , Europium/chemistry , Hydroxyapatites/chemistry , Luminescent Measurements , Phosphates , Water
9.
Colloids Surf B Biointerfaces ; 217: 112625, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35738078

ABSTRACT

Inhaled crystalline silica causes inflammatory lung diseases, but the mechanism for its unique activity compared to other oxides remains unclear, preventing the development of potential therapeutics. Here, the molecular recognition mechanism between membrane epitopes and "nearly free silanols" (NFS), a specific subgroup of surface silanols, is identified and proposed as a novel broad explanation for particle toxicity in general. Silica samples having different bulk and surface properties, specifically different amounts of NFS, are tested with a set of membrane systems of decreasing molecular complexity and different charge. The results demonstrate that NFS content is the primary determinant of membrane disruption causing red blood cell lysis and changes in lipid order in zwitterionic, but not in negatively charged liposomes. NFS-rich silica strongly and irreversibly adsorbs zwitterionic self-assembled phospholipid structures. This selective interaction is corroborated by density functional theory and supports the hypothesis that NFS recognize membrane epitopes that exhibit a positive quaternary amino and negative phosphate group. These new findings define a new paradigm for deciphering particle-biomembrane interactions that will support safer design of materials and what types of treatments might interrupt particle-biomembrane interactions.


Subject(s)
Silanes , Silicon Dioxide , Epitopes , Silanes/chemistry , Silicon Dioxide/chemistry , Surface Properties
10.
Phys Chem Chem Phys ; 24(12): 7224-7230, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35274636

ABSTRACT

HCN in the gas form is considered as a primary nitrogen source for the synthesis of prebiotic molecules in extraterrestrial environments. Nevertheless, the research mainly focused on the reactivity of HCN and its derivatives in aqueous systems, often using external high-energy supply in the form of cosmic rays or high energy photons. Very few studies have been devoted to the chemistry of HCN in the gas phase or at the gas/solid interphase, although they represent the more common scenarios in the outer space. In this paper we report about the reactivity of highly pure HCN in the 150-300 K range at the surface of amorphous and crystalline Mg2SiO4 (forsterite olivine), i.e. of solids among the constituents of the core of cosmic dust particles, comets, and meteorites. Amorphous silica and MgO were also studied as model representatives of Mg2SiO4 structural building blocks. IR spectroscopic results and the HR-MS analysis of the reaction products revealed Mg2+O2- acid/base pairs at the surface of Mg2SiO4 and MgO to be key in promoting the formation of HCN oligomers along with imidazole and purine compounds, already under very mild temperature and HCN pressure conditions, i.e. in the absence of external energetic triggers. Products include adenine nucleobase, a result which supports the hypothesis that prebiotic molecular building blocks can be easily formed through surface catalytic processes in the absence of high-energy supply.


Subject(s)
Gases , Meteoroids , Dust , Extraterrestrial Environment/chemistry , Silicates
11.
Front Chem ; 10: 1092221, 2022.
Article in English | MEDLINE | ID: mdl-36726450

ABSTRACT

Crystalline silica (CS) is a well-known hazardous material that causes severe diseases including silicosis, lung cancer, and autoimmune diseases. However, the hazard associated to crystalline silica is extremely variable and depends on some specific characteristics, including crystal structure and surface chemistry. The crystalline silica polymorphs share the SiO2 stoichiometry and differentiate for crystal structure. The different crystal lattices in turn expose differently ordered hydroxyl groups at the crystal surface, i.e., the silanols. The nearly free silanols (NFS), a specific population of weakly interacting silanols, have been recently advanced as the key surface feature that governs recognition mechanisms between quartz and cell membrane, initiating toxicity. We showed here that the nearly free silanols occur on the other crystalline silica polymorphs and take part in the molecular interactions with biomembranes. A set of crystalline silica polymorphs, including quartz, cristobalite, tridymite, coesite, and stishovite, was physico-chemically characterized and the membranolytic activity was assessed using red blood cells as model membranes. Infrared spectroscopy in highly controlled conditions was used to profile the surface silanol topochemistry and the occurrence of surface nearly free silanols on crystalline silica polymorphs. All crystalline silica polymorphs, but stishovite were membranolytic. Notably, pristine stishovite did not exhibited surface nearly free silanols. The topochemistry of surface silanols was modulated by thermal treatments, and we showed that the occurrence of nearly free silanols paralleled the membranolytic activity for the crystalline silica polymorphs. These results provide a comprehensive understanding of the structure-activity relationship between nearly free silanols and membranolytic activity of crystalline silica polymorphs, offering a possible clue for interpreting the molecular mechanisms associated with silica hazard and bio-minero-chemical interfacial phenomena, including prebiotic chemistry.

12.
J Agric Food Chem ; 69(48): 14478-14487, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34813307

ABSTRACT

We investigated the ability of microbial volatile organic compounds (MVOCs) emitted by Bacillus megaterium (a well-known MVOC producer) to modify the dissolution kinetics and surface of hydroxyapatite, a natural soil mineral. Facilitated phosphate release was induced by the airborne MVOCs in a time-dependent manner. Use of each standard chemical of the MVOCs then revealed that acetic and oxalic acids are crucial for the phenomenon. In addition, the ability of such MVOCs to engineer the apatite surfaces was evidenced by FT-IR spectra showing the COO- band variation with incubation time and the prolonged acceleration of phosphate release during the negligible acidification of the hydroxyapatite-containing solutions. The formation of calcium oxalate was revealed through SEM-EDS and XRD analyses, suggesting that MVOC oxalic acid interacts with calcium ions, leading to the precipitation of calcium oxalate, thus preventing the recrystallization of calcium phosphates. Gel- and soil-based plant cultivation tests employing Arabidopsis thaliana and solid calcium phosphates (i.e., nano- and microsized hydroxyapatites and calcium phosphate dibasic) demonstrated that these MVOC mechanisms facilitate plant growth by ensuring the prolonged supply of plant-available phosphate. The relationship between the growth enhancement and the particle size of the calcium phosphates also substantiated the MVOC sorption onto soil minerals related to plant growth. Given that most previous studies have assumed that MVOCs are a molecular lexicon directly detected by the dedicated sensing machinery of plants, our approach provides a new mechanistic view of the presence of abiotic mediators in the interaction between plants and microbes via MVOCs.


Subject(s)
Volatile Organic Compounds , Minerals , Phosphorus , Soil , Solubility , Spectroscopy, Fourier Transform Infrared
13.
Nanomaterials (Basel) ; 11(10)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34685181

ABSTRACT

In recent decades, nanodiamonds (NDs) have earned increasing interest in a wide variety of research fields, thanks to their excellent mechanical, chemical, and optical properties, together with the possibility of easily tuning their surface chemistry for the desired purpose. According to the application context, it is essential to acquire an extensive understanding of their interaction with water in terms of hydrophilicity, environmental adsorption, stability in solution, and impact on electrical properties. In this paper, we report on a systematic study of the effects of reducing and oxidizing thermal processes on ND surface water adsorption. Both detonation and milled NDs were analyzed by combining different techniques. Temperature-dependent infrared spectroscopy was employed to study ND surface chemistry and water adsorption, while dynamic light scattering allowed the evaluation of their behavior in solution. The influence of water adsorption on their electrical properties was also investigated and correlated with structural and optical information obtained via Raman/photoluminescence spectroscopy. In general, higher oxygen-containing surfaces exhibited higher hydrophilicity, better stability in solution, and higher electrical conduction, although for the latter the surface graphitic contribution was also crucial. Our results provide in-depth information on the hydrophilicity of NDs in relation to their surface chemical and physical properties, by also evaluating the impacts on their aggregation and electrical conductance.

14.
Molecules ; 26(6)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803726

ABSTRACT

The photoreduction of the Mo6+/SiO2 system with CO was investigated in situ, employing a recently developed experimental setup allowing for the acquisition of transmission FT-IR spectra under simultaneous UV irradiation. Carbon monoxide, besides acting as a reducing agent in such processes, is also a useful probe molecule able to detect coordinatively unsaturated sites exposed on the surface. The unprecedented quality of the spectroscopic data, obtained as a function of the reduction time, allowed us to better rationalize the different mechanisms previously proposed for the photoreduction process. These results, coupled with UV-Vis spectroscopic data, shed light on the oxidation state and surface structure of supported molybdenum species, which are key active sites for several important reactions, such as selective oxidation, polymerization, hydrodesulfurization, epoxidation and olefin metathesis.

15.
Nanoscale ; 13(13): 6577-6585, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33885537

ABSTRACT

TiO2 nanoparticles (NPs) are intensively studied and widely used due to their huge potential in numerous applications involving their interaction with ultraviolet light (e.g., photocatalysis and sunscreens). Typically, these NPs are in water-containing environments and thus tend to be hydrated. As such, there is a growing need to better understand the physicochemical properties of hydrated TiO2 NPs in order to improve their performance in photochemical applications (e.g., photocatalytic water splitting) and to minimise their environmental impact (e.g., potential biotoxicity). To help address the need for reliable and detailed data on how nano-titania interacts with water, we present a systematic experimental and theoretical study of surface hydroxyl (OH) groups on photoactive anatase TiO2 NPs. Employing well-defined experimentally synthesised NPs and detailed realistic NP models, we obtain the measured and computed infrared spectra of the surface hydroxyls, respectively. By comparing the experimental and theoretical spectra we are able to identify the type and location of different OH groups in these NP systems. Specifically, our study allows us to provide unprecedented and detailed information about the coverage-dependent distribution of hydroxyl groups on the surface of experimental titania NPs, the degree of their H-bonding interactions and their associated assigned vibrational modes. Our work promises to lead to new routes for developing new and safe nanotechnologies based on hydrated TiO2 NPs.

16.
J Synchrotron Radiat ; 27(Pt 6): 1662-1673, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33147192

ABSTRACT

X-ray synchrotron sources, possessing high power density, nanometric spot size and short pulse duration, are extending their application frontiers up to the exploration of direct matter modification. In this field, the use of atomistic and continuum models is now becoming fundamental in the simulation of the photoinduced excitation states and eventually in the phase transition triggered by intense X-rays. In this work, the X-ray heating phenomenon is studied by coupling the Monte Carlo method (MC) with the Fourier heat equation, to first calculate the distribution of the energy absorbed by the systems and finally to predict the heating distribution and evolution. The results of the proposed model are also compared with those obtained removing the explicit definition of the energy distribution, as calculated by the MC. A good approximation of experimental thermal measurements produced irradiating a millimetric glass bead is found for both of the proposed models. A further step towards more complex systems is carried out, including in the models the different time patterns of the source, as determined by the filling modes of the synchrotron storage ring. The two models are applied in three prediction cases, in which the heating produced in Bi2Sr2CaCu2O8+δ microcrystals by means of nanopatterning experiments with intense hard X-ray nanobeams is calculated. It is demonstrated that the temperature evolution is strictly connected to the filling mode of the storage ring. By coupling the MC with the heat equation, X-ray pulses that are 48 ps long, possessing an instantaneous photon flux of ∼44 × 1013 photons s-1, were found to be able to induce a maximum temperature increase of 42 K, after a time of 350 ps. Inversely, by ignoring the energy redistribution calculated with the MC, peaks temperatures up to hundreds of degrees higher were found. These results highlight the importance of the energy redistribution operated by primary and secondary electrons in the theoretical simulation of the X-ray heating effects.

17.
Molecules ; 25(20)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050364

ABSTRACT

Water is a molecule always present in the reaction environment in photocatalytic and biomedical applications of TiO2 and a better understanding of its interaction with the surface of TiO2 nanoparticles is crucial to develop materials with improved performance. In this contribution, we first studied the nature and the surface structure of the exposed facets of three commercial TiO2 samples (i.e., TiO2 P25, SX001, and PC105) by electron microscopy and IR spectroscopy of adsorbed CO. The morphological information was then correlated with the water adsorption properties, investigated at the molecular level, moving from multilayers of adsorbed H2O to the monolayer, combining medium- and near-IR spectroscopies. Finally, we assessed in a quantitative way the surface hydration state at different water equilibrium pressures by microgravimetric measurements.


Subject(s)
Nanoparticles/chemistry , Titanium/chemistry , Water/chemistry , Adsorption , Spectroscopy, Fourier Transform Infrared , Spectroscopy, Near-Infrared
18.
Nanomaterials (Basel) ; 10(9)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967347

ABSTRACT

Understanding the correlation between the morphological and functional properties of particulate materials is crucial across all fields of physical and natural sciences. This manuscript reports on the investigation of the effect of polyethylene glycol (PEG) employed as a capping agent in the synthesis of SrTiO3 crystals. The crucial influence of PEG on both the shape and size of the strontium titanate particles is revealed, highlighting the effect on the photocurrents measured under UV-Vis irradiation.

19.
Nano Lett ; 20(5): 3889-3894, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32227961

ABSTRACT

The employment of ionizing radiation is a powerful tool in cancer therapy, but beyond targeted effects, many studies have highlighted the relevance of its off-target consequences. An exhaustive understanding of the mechanisms underlying these effects is still missing, and no real-time data about signals released by cells during irradiation are presently available. We employed a synchrotron X-ray nanobeam to perform the first real-time simultaneous measurement of both X-ray irradiation and in vitro neurotransmitter release from individual adrenal phaeochromocytoma (PC12) cells plated over a diamond-based multielectrode array. We have demonstrated that, in specific conditions, X-rays can alter cell activity by promoting dopamine exocytosis, and such an effect is potentially very attractive for a more effective treatment of tumors.


Subject(s)
Dopamine , Exocytosis , Neurotransmitter Agents , X-Rays , Animals , Diamond , PC12 Cells , Rats
20.
Phys Chem Chem Phys ; 21(48): 26279-26283, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31687690

ABSTRACT

The combination of quantum-mechanical simulations and infrared absorption spectroscopy measurements provides a clear picture for a long standing puzzle in surface science: the actual structure and vibrational dynamics of the low-temperature ordered CO monolayer adsorbed on (001) MgO surfaces. The equilibrium structure of the commensurate (4 × 2) adsorbed phase consists of three CO molecules per primitive cell (surface coverage of 75%) located at two inequivalent sites: one molecule seats upright on top of a Mg site while two molecules, tilted off the normal to the surface, are symmetrically positioned relative to the upright one with anti-parallel projections on the surface. This configuration, long believed to be incompatible with measured polarization infrared spectra, is shown to reproduce all observed spectral features, including a new, unexpected one: the vanishing anharmonicity of CO stretching modes in the monolayer.

SELECTION OF CITATIONS
SEARCH DETAIL
...