Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Biol Med (Maywood) ; 246(12): 1388-1399, 2021 06.
Article in English | MEDLINE | ID: mdl-33794698

ABSTRACT

Lyme disease, which is primarily caused by infection with the bacterium Borrelia burgdorferi in the United States or other Borrelia species internationally, presents an ongoing challenge for diagnostics. Serological testing is the primary means of diagnosis but testing approaches differ widely, with varying degrees of sensitivity and specificity. Moreover, there is currently no reliable test to determine disease resolution following treatment. A distinct challenge in Lyme disease diagnostics is the variable patterns of human immune response to a plurality of antigens presented by Borrelia spp. during the infection. Thus, multiplexed testing approaches that capture these patterns and detect serological response against multiple antigens may be the key to prompt, accurate Lyme disease diagnosis. In this review, current state-of-the-art multiplexed diagnostic approaches are presented and compared with respect to their diagnostic accuracy and their potential for monitoring response to treatment.


Subject(s)
Lyme Disease/diagnosis , Lyme Disease/immunology , Antigens, Bacterial/immunology , Borrelia burgdorferi/immunology , Humans , Immunity/immunology , Sensitivity and Specificity , Serologic Tests/methods
2.
Biosens Bioelectron ; 171: 112679, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33069957

ABSTRACT

The 2019 SARS CoV-2 (COVID-19) pandemic has illustrated the need for rapid and accurate diagnostic tests. In this work, a multiplexed grating-coupled fluorescent plasmonics (GC-FP) biosensor platform was used to rapidly and accurately measure antibodies against COVID-19 in human blood serum and dried blood spot samples. The GC-FP platform measures antibody-antigen binding interactions for multiple targets in a single sample, and has 100% selectivity and sensitivity (n = 23) when measuring serum IgG levels against three COVID-19 antigens (spike S1, spike S1S2, and the nucleocapsid protein). The GC-FP platform yielded a quantitative, linear response for serum samples diluted to as low as 1:1600 dilution. Test results were highly correlated with two commercial COVID-19 antibody tests, including an enzyme linked immunosorbent assay (ELISA) and a Luminex-based microsphere immunoassay. To demonstrate test efficacy with other sample matrices, dried blood spot samples (n = 63) were obtained and evaluated with GC-FP, yielding 100% selectivity and 86.7% sensitivity for diagnosing prior COVID-19 infection. The test was also evaluated for detection of multiple immunoglobulin isotypes, with successful detection of IgM, IgG and IgA antibody-antigen interactions. Last, a machine learning approach was developed to accurately score patient samples for prior COVID-19 infection, using antibody binding data for all three COVID-19 antigens used in the test.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Biosensing Techniques/instrumentation , Clinical Laboratory Techniques , Coronavirus Infections/blood , Pneumonia, Viral/blood , Antibodies, Viral/immunology , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Dried Blood Spot Testing , Equipment Design , Fluorescence , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lab-On-A-Chip Devices , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...