Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Smart Health (Amst) ; 262022 Dec.
Article in English | MEDLINE | ID: mdl-37169026

ABSTRACT

Background: Medication nonadherence is a critical problem with severe implications in individuals at risk for atherosclerotic cardiovascular disease. Many studies have attempted to predict medication adherence in this population, but few, if any, have been effective in prediction, sug-gesting that essential risk factors remain unidentified. Objective: This study's objective was to (1) establish an accurate prediction model of medi-cation adherence in individuals at risk for atherosclerotic cardiovascular disease and (2) identify significant contributing factors to the predictive accuracy of medication adherence. In particular, we aimed to use only the baseline questionnaire data to assess medication adherence prediction feasibility. Methods: A sample of 40 individuals at risk for atherosclerotic cardiovascular disease was recruited for an eight-week feasibility study. After collecting baseline data, we recorded data from a pillbox that sent events to a cloud-based server. Health measures and medication use events were analyzed using machine learning algorithms to identify variables that best predict medication adherence. Results: Our adherence prediction model, based on only the ten most relevant variables, achieved an average error rate of 12.9%. Medication adherence was closely correlated with being encouraged to play an active role in their treatment, having confidence about what to do in an emergency, knowledge about their medications, and having a special person in their life. Conclusions: Our results showed the significance of clinical and psychosocial factors for predicting medication adherence in people at risk for atherosclerotic cardiovascular diseases. Clini-cians and researchers can use these factors to stratify individuals to make evidence-based decisions to reduce the risks.

2.
Cogn Syst Res ; 54: 258-272, 2019 May.
Article in English | MEDLINE | ID: mdl-31565029

ABSTRACT

Smart environments offer valuable technologies for activity monitoring and health assessment. Here, we describe an integration of robots into smart environments to provide more interactive support of individuals with functional limitations. RAS, our Robot Activity Support system, partners smart environment sensing, object detection and mapping, and robot interaction to detect and assist with activity errors that may occur in everyday settings. We describe the components of the RAS system and demonstrate its use in a smart home testbed. To evaluate the usability of RAS, we also collected and analyzed feedback from participants who received assistance from RAS in a smart home setting as they performed routine activities.

3.
Pervasive Mob Comput ; 38(Pt 1): 77-91, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28694746

ABSTRACT

While activity recognition has been shown to be valuable for pervasive computing applications, less work has focused on techniques for forecasting the future occurrence of activities. We present an activity forecasting method to predict the time that will elapse until a target activity occurs. This method generates an activity forecast using a regression tree classifier and offers an advantage over sequence prediction methods in that it can predict expected time until an activity occurs. We evaluate this algorithm on real-world smart home datasets and provide evidence that our proposed approach is most effective at predicting activity timings.

4.
IEEE Trans Knowl Data Eng ; 29(12): 2744-2757, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29456436

ABSTRACT

Recent progress in Internet of Things (IoT) platforms has allowed us to collect large amounts of sensing data. However, there are significant challenges in converting this large-scale sensing data into decisions for real-world applications. Motivated by applications like health monitoring and intervention and home automation we consider a novel problem called Activity Prediction, where the goal is to predict future activity occurrence times from sensor data. In this paper, we make three main contributions. First, we formulate and solve the activity prediction problem in the framework of imitation learning and reduce it to a simple regression learning problem. This approach allows us to leverage powerful regression learners that can reason about the relational structure of the problem with negligible computational overhead. Second, we present several metrics to evaluate activity predictors in the context of real-world applications. Third, we evaluate our approach using real sensor data collected from 24 smart home testbeds. We also embed the learned predictor into a mobile-device-based activity prompter and evaluate the app for 9 participants living in smart homes. Our results indicate that our activity predictor performs better than the baseline methods, and offers a simple approach for predicting activities from sensor data.

SELECTION OF CITATIONS
SEARCH DETAIL
...