Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-505217

ABSTRACT

ObjectivesIn our previous research, we developed a mathematical model via molecular simulation analysis to predict the infectivity of seven SARS-CoV-2 variants. In this report, we aimed to predict the relative risk of the recent new variants of SARS-CoV-2 as based on our previous research. MethodsWe subjected Omicron BA.4/5 and BA.2.75 variants of SARS-CoV-2 to the analysis to determine the absolute evolutionary distance of the spike protein gene (S gene) of the variants from the Wuhan variant so as to appreciate the changes in the spike protein. We performed the molecular docking simulation analyses of the spike proteins with human angiotensin-converting enzyme 2 (ACE2) to understand the docking affinities of these variants. We then compared the evolutionary distances and the docking affinities of these variants with those of the seven variants that we had analyzed in our previous research. ResultsThe evolutionary distances of the S gene in BA.4/5 and BA.2.75 from the Wuhan variant were longer than those of the other variants. BA.2.75 had the highest docking affinity of the spike protein with ACE2 (ratio per Wuhan variant). ConclusionThe important results from this analysis are the following: BA.2.75 has both the highest docking affinity and the longest evolutionary distance of the S gene. These results suggest that BA.2.75 infection can spread farther than can infections of preexisting variants.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-486373

ABSTRACT

Variants of a coronavirus (SARS-CoV-2) have been spreading in a global pandemic. Improved understanding of the infectivity of future new variants is important so that effective countermeasures against them can be quickly undertaken. In our research reported here, we aimed to predict the infectivity of SARS-CoV-2 by using a mathematical model with molecular simulation analysis, and we used phylogenetic analysis to determine the evolutionary distance of the spike protein gene (S gene) of SARS-CoV-2. We subjected the six variants and the wild type of spike protein and human angiotensin-converting enzyme 2 (ACE2) to molecular docking simulation analyses to understand the binding affinity of spike protein and ACE2. We then utilized regression analysis of the correlation coefficient of the mathematical model and the infectivity of SARS-CoV-2 to predict infectivity. The evolutionary distance of the S gene correlated with the infectivity of SARS-CoV-2 variants. The coefficient of the mathematical model obtained with results of molecular docking simulation also correlated with the infectivity of SARS-CoV-2 variants. These results suggest that the data from the docking simulation for the receptor binding domain of variant spike proteins and human ACE2 were valuable for prediction of SARS-CoV-2 infectivity. In addition, we developed a mathematical model for prediction of SARS-CoV-2 variant infectivity by using binding affinity obtained via molecular docking and the evolutionary distance of the S gene.

SELECTION OF CITATIONS
SEARCH DETAIL
...