Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 19(21): 215601, 2008 May 28.
Article in English | MEDLINE | ID: mdl-21730574

ABSTRACT

We present a fully elaborated process to grow arrays of metallic nanowires with controlled geometry and density, based on electrochemical filling of nanopores in track-etched templates. Nanowire growth is performed at room temperature, atmospheric pressure and is compatible with low cost fabrication and large surfaces. This technique offers an excellent control of the orientation, shape and nanowires density. It is applied to fabricate field emission arrays with a good control of the emission site density. We have prepared Co, Ni, Cu and Rh nanowires with a height of 3 µm, a diameter of 80 nm and a density of ∼10(7) cm(-2). The electron field emission measurements and total energy distributions show that the as-grown nanowires exhibit a complex behaviour, first with emission activation under high field, followed by unstable emission. A model taking into account the effect of an oxide layer covering the nanowire surface is developed to explain this particular field emission behaviour. Finally, we present an in situ cleaning procedure by ion bombardment that collectively removes this oxide layer, leading to a stable and reproducible emission behaviour. After treatment, the emission current density is ∼1 mA cm(-2) for a 30 V µm(-1) applied electric field.

2.
Nanotechnology ; 19(10): 105201, 2008 Mar 12.
Article in English | MEDLINE | ID: mdl-21817693

ABSTRACT

This paper describes a novel photocathode which is an array of vertically aligned multi-walled carbon nanotubes (MWCNTs), each MWCNT being associated with one p-i-n photodiode. Unlike conventional photocathodes, the functions of photon-electron conversion and subsequent electron emission are physically separated. Photon-electron conversion is achieved with p-i-n photodiodes and the electron emission occurs from the MWCNTs. The current modulation is highly efficient as it uses an optically controlled reconfiguration of the electric field at the MWCNT locations. Such devices are compatible with high frequency and very large bandwidth operation and could lead to their application in compact, light and efficient microwave amplifiers for satellite telecommunication. To demonstrate this new photocathode concept, we have fabricated the first carbon nanotube based photocathode using silicon p-i-n photodiodes and MWCNT bunches. Using a green laser, this photocathode delivers 0.5 mA with an internal quantum efficiency of 10% and an I(ON)/I(OFF) ratio of 30.

3.
Nano Lett ; 5(11): 2135-8, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16277440

ABSTRACT

When a carbon nanotube emitter is operated at high currents (typically above 1 microA per emitter), a small voltage drop ( approximately few volts) along its length or at its contact generates a reverse/canceling electric field that causes a saturation-like deviation from the classical Fowler-Nordheim behavior with respect to the applied electric field. We present a correction to the Fowler-Nordheim equation to account for this effect, which is experimentally verified using field emission and contact electrical measurements on individual carbon nanotube emitters. By using rapid thermal annealing to improve both the crystallinity of the carbon nanotubes and their electrical contact to the substrate, it is possible to reduce this voltage drop, allowing very high currents of up to 100 microA to be achieved per emitter with no significant deviation from the classical Fowler-Nordheim behavior.

4.
Nature ; 437(7061): 968, 2005 Oct 13.
Article in English | MEDLINE | ID: mdl-16222290

ABSTRACT

To communicate, spacecraft and satellites rely on microwave devices, which at present are based on relatively inefficient thermionic electron sources that require heating and cannot be switched on instantaneously. Here we describe a microwave diode that uses a cold-cathode electron source consisting of carbon nanotubes and that operates at high frequency and at high current densities. Because it weighs little, responds instantaneously and has no need of heating, this miniaturized electron source should prove valuable for microwave devices used in telecommunications.

SELECTION OF CITATIONS
SEARCH DETAIL
...