Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1171544, 2023.
Article in English | MEDLINE | ID: mdl-37469865

ABSTRACT

Introduction: Triple-combination cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy with elexacaftor/tezacaftor/ivacaftor (ETI) was introduced in August 2020 in Germany for people with CF (pwCF) ≥12 years (yrs.) of age and in June 2021 for pwCF ≥6 yrs of age. In this single-center study, we analyzed longitudinal data on the percent-predicted forced expiratory volume (ppFEV1) and body-mass-index (BMI) for 12 months (mo.) after initiation of ETI by linear mixed models and regression analyses to identify age- and severity-dependent determinants of response to ETI. Methods: We obtained data on 42 children ≥6-11 yrs, 41 adolescents ≥12-17 yrs, and 143 adults by spirometry and anthropometry prior to ETI, and 3 and 12 mo. after ETI initiation. Data were stratified by the age group and further sub-divided into age-specific ppFEV1 impairment. To achieve this, the age strata were divided into three groups, each according to their baseline ppFEV1: lowest 25%, middle 50%, and top 25% of ppFEV1. Results: Adolescents and children with more severe lung disease prior to ETI (within the lowest 25% of age-specific ppFEV1) showed higher improvements in lung function than adults in this severity group (+18.5 vs. +7.5; p = 0.002 after 3 mo. and +13.8 vs. +7.2; p = 0.012 after 12 mo. of ETI therapy for ≥12-17 years and +19.8 vs. +7.5; p = 0.007 after 3 mo. for children ≥6-11 yrs). In all age groups, participants with more severe lung disease showed higher BMI gains than those with medium or good lung function (within the middle 50% or top 25% of age-specific ppFEV1). Regression analyses identified age as a predictive factor for FEV1 increase at 3 mo. after ETI initiation, and age and ppFEV1 at ETI initiation as predictive factors for FEV1 increase 12 mo. after ETI initiation. Discussion: We report initial data, which suggest that clinical response toward ETI depends on age and lung disease severity prior to ETI initiation, which argue for early initiation of ETI.

2.
Front Pharmacol ; 14: 1153656, 2023.
Article in English | MEDLINE | ID: mdl-37050906

ABSTRACT

Introduction: Evidence for the efficiency of highly-effective triple-CFTR-modulatory therapy with elexacaftor/tezacaftor/ivacaftor (ETI), either demonstrated in clinical trials or by in vitro testing, is lacking for about 10% of people with cystic fibrosis (pwCF) with rare mutations. Comprehensive assessment of CFTR function can provide critical information on the impact of ETI on CFTR function gains for such rare mutations, lending argument of the prescription of ETI. The mutation c.165-2A>G is a rare acceptor splice mutation that has not yet been functionally characterized. We here describe the functional changes induced by ETI in two brothers who are compound heterozygous for the splice mutations c.273+1G>C and c.165-2A>G. Methods: We assessed the effects of ETI on CFTR function by quantitative pilocarpine iontophoresis (QPIT), nasal potential difference measurements (nPD), intestinal current measurements (ICM), ß-adrenergic sweat secretion tests (SST) and multiple breath washout (MBW) prior to and 4 months after the initiation of ETI. Results: Functional CFTR analysis prior to ETI showed no CFTR function in the respiratory and intestinal epithelia and in the sweat gland reabsorptive duct in either brother. In contrast, ß-adrenergic stimulated, CFTR-mediated sweat secretion was detectable in the CF range. Under ETI, both brothers continued to exhibit high sweat chloride concentration in QPIT, evidence of low residual CFTR function in the respiratory epithelia, but normalized ß-adrenergically stimulated production of primary sweat. Discussion: Our results are the first to demonstrate that the c.165-2A>G/c.273+1G>C mutation genotype permits mutant CFTR protein expression. We showed organ-specific differences in the expression of CFTR and consecutive responses to ETI of the c.165-2A>G/c.273+1G>C CFTR mutants that are probably accomplished by non-canonical CFTR mRNA isoforms. This showcase tells us that the individual response of rare CFTR mutations to highly-effective CFTR modulation cannot be predicted from assays in standard cell cultures, but requires the personalized multi-organ assessment by CFTR biomarkers.

3.
Microbiol Spectr ; : e0363322, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36892308

ABSTRACT

The microbial metagenome in cystic fibrosis (CF) airways was investigated by whole-genome shotgun sequencing of total DNA isolated from nasal lavage samples, oropharyngeal swabs, and induced sputum samples collected from 65 individuals with CF aged 7 to 50 years. Each patient harbored a personalized microbial metagenome unique in microbial load and composition, the exception being monocultures of the most common CF pathogens Staphylococcus aureus and Pseudomonas aeruginosa from patients with advanced lung disease. The sampling of the upper airways by nasal lavage uncovered the fungus Malassezia restricta and the bacterium Staphylococcus epidermidis as prominent species. Healthy and CF donors harbored qualitatively and quantitatively different spectra of commensal bacteria in their sputa, even in the absence of any typical CF pathogen. If P. aeruginosa, S. aureus, or Stenotrophomonas maltophilia belonged to the trio of the most abundant species in the CF sputum metagenome, common inhabitants of the respiratory tract of healthy subjects, i.e., Eubacterium sulci, Fusobacterium periodonticum, and Neisseria subflava, were present only in low numbers or not detectable. Random forest analysis identified the numerical ecological parameters of the bacterial community, such as Shannon and Simpson diversity, as the key parameters that globally distinguish sputum samples from CF and healthy donors. IMPORTANCE Cystic fibrosis (CF) is the most common life-limiting monogenetic disease in European populations and is caused by mutations in the CFTR gene. Chronic airway infections with opportunistic pathogens are the major morbidity that determines prognosis and quality of life in most people with CF. We examined the composition of the microbial communities of the oral cavity and upper and lower airways in CF patients across all age groups. From early on, the spectrum of commensals is different in health and CF. Later on, when the common CF pathogens take up residence in the lungs, we observed differential modes of depletion of the commensal microbiota in the presence of S. aureus, P. aeruginosa, S. maltophilia, or combinations thereof. It remains to be seen whether the implementation of lifelong CFTR (cystic fibrosis transmembrane conductance regulator) modulation will change the temporal evolution of the CF airway metagenome.

4.
Front Pharmacol ; 14: 1114584, 2023.
Article in English | MEDLINE | ID: mdl-36778025

ABSTRACT

Background: Defects in expression, maturation or function of the epithelial membrane glycoprotein CFTR are causative for the progressive disease cystic fibrosis. Recently, molecular therapeutics that improve CFTR maturation and functional defects have been approved. We aimed to verify whether we could detect an improvement of CFTR protein expression and maturation by triple therapy with elexacaftor-tezacaftor-ivacaftor (ELX/TEZ/IVA). Methods: Rectal suction biopsies of 21 p.Phe508del homozygous or compound heterozygous CF patients obtained pre- and during treatment with ELX/TEZ/IVA were analyzed by CFTR Western blot that was optimized to distinguish CFTR glycoisoforms. Findings: CFTR western immunoblot analysis revealed that-compared to baseline-the levels of CFTR protein increased by at least twofold in eight out of 12 patients upon treatment with ELX/TEZ/IVA compared to baseline (p < 0.02). However, polydispersity of the mutant CFTR protein was lower than that of the fully glycosylated wild type CFTR Golgi isoform, indicating an incompletely glycosylated p.Phe508el CFTR protein isoform C* in patients with CF which persists after ELX/TEZ/IVA treatment. Interpretation: Treatment with ELX/TEZ/IVA increased protein expression by facilitating the posttranslational processing of mutant CFTR but apparently did not succeed in generating the polydisperse spectrum of N-linked oligosaccharides that is characteristic for the wild type CFTR band C glycoisoform. Our results caution that the lower amounts or immature glycosylation of the C* glycoisoform observed in patients' biomaterial might not translate to fully restored function of mutant CFTR necessary for long-term provision of clinical benefit.

5.
J Cyst Fibros ; 21(2): 375-377, 2022 03.
Article in English | MEDLINE | ID: mdl-34489188

ABSTRACT

A non-consanguineous two-generation family of parent and monozygous twins who all three share the same CFTR mutation genotype p.Phe508del / p.Arg117His, was examined in clinical features, sweat test, nasal potential difference and intestinal current measurements. As expected the twins were very much alike in anthropometry and appearance and shared the clinical manifestation of CFTR dysfunction albeit at different intensity but unexpectedly like in comparison to their mother they were discordant in their CFTR-mediated basic defect and the response thereof to CFTR potentiation by ivacaftor. This case report illustrates the strong impact of non-inherited factors on the electrophysiological phenotype of the most common CFTR mutation genotype of variable clinical significance.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Aminophenols , Benzodioxoles , Cystic Fibrosis/diagnosis , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Female , Genotype , Humans , Mothers , Mutation , Nuclear Family
6.
Am J Respir Crit Care Med ; 205(5): 540-549, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34936849

ABSTRACT

Rationale: The CFTR (cystic fibrosis transmembrane conductance regulator) modulator combination elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) was shown to improve clinical outcomes and sweat chloride concentration in patients with cystic fibrosis (CF) and one or two F508del alleles. However, the effect of ELX/TEZ/IVA on CFTR function in the airways and intestine has not been studied. Objectives: To assess the effect of ELX/TEZ/IVA on CFTR function in airway and intestinal epithelia in patients with CF and one or two F508del alleles aged 12 years and older. Methods: This prospective, observational, multicenter study assessed clinical outcomes including FEV1% predicted and body mass index and the CFTR biomarkers sweat chloride concentration, nasal potential difference, and intestinal current measurement before and 8-16 weeks after initiation of ELX/TEZ/IVA. Measurements and Main Results: A total of 107 patients with CF including 55 patients with one F508del and a minimal function mutation and 52 F508del homozygous patients were enrolled in this study. In patients with one F508del allele, nasal potential difference and intestinal current measurement showed that ELX/TEZ/IVA improved CFTR function in nasal epithelia to a level of 46.5% (interquartile range [IQR], 27.5-72.4; P < 0.001) and in intestinal epithelia to 41.8% of normal (IQR, 25.1-57.6; P < 0.001). In F508del homozygous patients, ELX/TEZ/IVA exceeded improvement of CFTR function observed with TEZ/IVA and increased CFTR-mediated Cl- secretion to a level of 47.4% of normal (IQR, 19.3-69.2; P < 0.001) in nasal and 45.9% (IQR, 19.7-66.6; P < 0.001) in intestinal epithelia. Conclusions: Treatment with ELX/TEZ/IVA results in effective improvement of CFTR function in airway and intestinal epithelia in patients with CF and one or two F508del alleles. Clinical trial registered with www.clinicaltrials.gov (NCT04732910).


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Alleles , Aminophenols/therapeutic use , Benzodioxoles/therapeutic use , Chloride Channel Agonists/therapeutic use , Chlorides , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Humans , Indoles , Mutation , Prospective Studies , Pyrazoles , Pyridines , Pyrrolidines , Quinolones
7.
ERJ Open Res ; 6(4)2020 Oct.
Article in English | MEDLINE | ID: mdl-33263048

ABSTRACT

BACKGROUND: Multiple-breath washout (MBW)-derived lung clearance index (LCI) detects early cystic fibrosis (CF) lung disease. LCI was used as an end-point in single- and multicentre settings at highly experienced MBW centres in preschool children. However, multicentre feasibility of MBW in children aged 2-6 years, including centres naïve to this technique, has not been determined systematically. METHODS: Following central training, 91 standardised nitrogen MBW investigations were performed in 74 awake preschool children (15 controls, 46 with CF, and 13 with other lung diseases), mean age 4.6±0.9 years at investigation, using a commercially available device across five centres in Germany (three experienced, two naïve to the performance in awake preschool children) with central data analysis. Each MBW investigation consisted of several measurements. RESULTS: Overall success rate of MBW investigations was 82.4% ranging from 70.6% to 94.1% across study sites. The number of measurements per investigation was significantly different between sites ranging from 3.7 to 6.2 (p<0.01), while the mean number of successful measurements per investigation was comparable with 2.1 (range, 1.9 to 2.5; p=0.46). In children with CF, the LCI was increased (median 8.2, range, 6.7-15.5) compared to controls (median 7.3, range 6.5-8.3; p<0.01), and comparable to children with other lung diseases (median 7.9, range, 6.6-13.9; p=0.95). CONCLUSION: This study demonstrates that multicentre MBW in awake preschool children is feasible, even in centres previously naïve, with central coordination to assure standardised training, quality control and supervision. Our results support the use of LCI as multicentre end-point in clinical trials in awake preschoolers with CF.

8.
BMJ Open Respir Res ; 7(1)2020 10.
Article in English | MEDLINE | ID: mdl-33020115

ABSTRACT

BACKGROUND: Nasal potential difference (NPD) and intestinal current measurements (ICM) are cystic fibrosis transmembrane conductance regulator (CFTR) biomarkers recommended to make a diagnosis in individuals with inconclusive sweat test and CFTR genetics and a clinical suspicion for cystic fibrosis (CF) or CFTR-related disorder (CFTR-RD). METHODS: NPD and ICM were measured according to standard operating procedures of the European Cystic Fibrosis Society Diagnostic Network Working Group. RESULTS: We assessed 219 individuals by NPD or ICM who had been referred to our laboratory due to clinical symptoms suggestive of CF, but inconclusive sweat test and CFTR genetics (median age: 16.3 years, range 0.4 to 76 years). CF or CFTR-related disorder was diagnosed in 22 of 29 patients (76%) with a CFTR genotype of unknown or variable clinical significance and in 51 of 190 carriers (27%) of one (35/42) or no (16/148) identified CFTR mutation. If two CFTR sequence variants had been identified, the outcome of NPD and ICM was consistent with the classification of the CFTR2 database. Moreover, a suspected false-positive diagnosis of CF was confirmed in seven and withdrawn in eight patients. Of 26 individuals assessed by both NPD and ICM, eleven individuals exhibited discordant tracings of ICM and NPD, with one measurement being in the CF range and the other in the normal range. CONCLUSION: The majority of patients whom we diagnosed with CF or CFTR-RD by extended electrophysiology are carriers of the wild-type CFTR coding sequence on at least one of their CF alleles. The disease-causing genetic lesions should reside in the non-coding region of CFTR or elsewhere in the genome, affecting the regulation of CFTR expression in a tissue-depending fashion which may explain the large within-group variability of CFTR activity in the respiratory and intestinal epithelium seen in this group.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Adolescent , Adult , Aged , Biomarkers , Child , Child, Preschool , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Infant , Middle Aged , Reference Values , Sweat , Young Adult
9.
Mol Genet Genomic Med ; 7(2): e00526, 2019 02.
Article in English | MEDLINE | ID: mdl-30600599

ABSTRACT

BACKGROUND: The impact of complex alleles on CFTR processing and function has yet not been investigated in native human tissue. METHODS: Intestinal current measurements (ICM) followed by CFTR immunoblot were performed on rectal biopsies taken from two siblings who are compound heterozygous for the CFTR mutations p.Phe508del and the complex allele p.[Arg74Trp;Val201Met;Asp1270Asn]. RESULTS: Normal and subnormal chloride secretory responses in the ICM were associated with normal and fourfold reduced amounts of the mature glycoform band C CFTR, respectively, consistent with the unequal clinical phenotype of the siblings. CONCLUSION: The combined use of bioassay and protein analysis is particularly meaningful to resolve the CFTR phenotype of "indeterminate" borderline CFTR genotypes on a case-to-case basis.


Subject(s)
Action Potentials , Colon/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Phenotype , Cell Line , Cells, Cultured , Child , Chlorides/metabolism , Colon/cytology , Colon/physiology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/physiology , Ion Transport , Male , Mutation, Missense
SELECTION OF CITATIONS
SEARCH DETAIL
...