Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Med Sci (Paris) ; 40(1): 10-15, 2024 Jan.
Article in French | MEDLINE | ID: mdl-38299897

ABSTRACT

Research into the interrelationships between oral and systemic diseases has been growing exponentially for over 20 years. Teeth and their supporting tissues can be affected by pathologies, particularly infectious ones, the consequences of which are felt locally in the oral cavity and at a distance in the body. Oral diseases frequently lead to the maintenance of an inflammatory state in oral bones and mucosa, which complicates the treatment of systemic inflammatory pathologies. The aim of this review is to take stock of current knowledge concerning the interrelationships that may exist between the oral environment and other organs, in both adults and children.


Title: Les dents et le milieu buccal au cœur de la santé globale. Abstract: La recherche autour des interrelations existant entre les maladies orales et les maladies systémiques connaît une croissance exponentielle depuis plus de vingt ans. Les dents et leurs tissus de soutien peuvent être atteints de maladies, notamment infectieuses, dont les conséquences se font ressentir localement, dans la cavité buccale, mais aussi à distance dans l'organisme. Ces maladies conduisent fréquemment à l'entretien d'un état inflammatoire dans la cavité orale qui complique les traitements de maladies inflammatoires systémiques. L'objectif de cette revue est de dresser un état des lieux des connaissances actuelles concernant les interrelations qui peuvent exister, chez l'adulte comme chez l'enfant.


Subject(s)
Communicable Diseases , Adult , Child , Humans , Mouth
2.
Med Sci (Paris) ; 40(1): 42-48, 2024 Jan.
Article in French | MEDLINE | ID: mdl-38299902

ABSTRACT

The liver has many important biological functions for the body, as it is involved in the storage and distribution of nutrients (carbohydrates to glycogen, lipids to triglycerides), the digestion of fats, the synthesis of blood proteins, and the detoxification of alcohol and drugs. The liver can be affected by various diseases such as viral or drug-induced hepatitis, fibrosis and cirrhosis, in which damaged hepatocytes are progressively replaced by scar tissue.


Title: Microbiote buccal et foie. Abstract: Le foie possède de nombreuses fonctions biologiques importantes pour l'organisme. Il peut être atteint par diverses maladies, telles que les hépatites virales ou médicamenteuses, la fibrose et la cirrhose. Lors de ces affections, les hépatocytes endommagés sont progressivement remplacés par du tissu cicatriciel. Par ailleurs, une altération du microbiote oral peut être à l'origine d'une altération des réponses immunitaires et ainsi contribuer au développement d'une inflammation qui touchera également le foie. En effet, les personnes souffrant d'hémochromatose ou de stéatose hépatique non alcoolique présentent des anomalies importantes du microbiote oral. De même, des concentrations élevées de certaines bactéries colonisant la cavité buccale, telles que Porphyromonas gingivalis, sont associées à des facteurs de risque accrus de stéatose hépatique non alcoolique.


Subject(s)
Liver , Microbiota , Humans , Liver/metabolism , Liver Cirrhosis/pathology , Hepatocytes/metabolism
3.
Diagnostics (Basel) ; 13(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37892006

ABSTRACT

Over the past decade, there have been significant advancements in the high-flow analysis of "omics," shedding light on the relationship between the microbiota and the host. However, the full recognition of this relationship and its implications in cardiometabolic diseases are still underway, despite advancements in understanding the pathophysiology of these conditions. Cardiometabolic diseases, which include a range of conditions from insulin resistance to cardiovascular disease and type 2 diabetes, continue to be the leading cause of mortality worldwide, with a persistently high morbidity rate. While the link between the intestinal microbiota and cardiometabolic risks has been extensively explored, the role of the oral microbiota, the second-largest microbiota in the human body, and specifically the dysbiosis of this microbiota in causing these complications, remains incompletely defined. This review aims to examine the association between the oral microbiota and cardiometabolic diseases, focusing on the dysbiosis of the oral microbiota, particularly in periodontal disease. Additionally, we will dive into the mechanistic aspects of this dysbiosis that contribute to the development of these complications. Finally, we will discuss potential prevention and treatment strategies, including the use of prebiotics, probiotics, and other interventions.

4.
Int J Mol Sci ; 24(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37894804

ABSTRACT

The aim of this study was to analyze the link between periodontal microbiota and obesity in humans. We conducted a cohort study including 45 subjects with periodontitis divided into two groups: normo-weighted subjects with a body mass index (BMI) between 20 and 25 kg/m2 (n = 34) and obese subjects with a BMI > 30 kg/m2 (n = 11). Our results showed that obesity was associated with significantly more severe gingival inflammation according to Periodontal Inflamed Surface Area (PISA index). Periodontal microbiota taxonomic analysis showed that the obese (OB) subjects with periodontitis were characterized by a specific signature of subgingival microbiota with an increase in Gram-positive bacteria in periodontal pockets, associated with a decrease in microbiota diversity compared to that of normo-weighted subjects with periodontitis. Finally, periodontal treatment response was less effective in OB subjects with persisting periodontal inflammation, reflecting a still unstable periodontal condition and a risk of recurrence. To our knowledge, this study is the first exploring both salivary and subgingival microbiota of OB subjects. Considering that OB subjects are at higher periodontal risk, this could lead to more personalized preventive or therapeutic strategies for obese patients regarding periodontitis through the specific management of oral microbiota of obese patients.


Subject(s)
Microbiota , Periodontitis , Humans , Cohort Studies , Bacteria , Periodontitis/microbiology , Inflammation/complications , Obesity/complications
5.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675104

ABSTRACT

(1) Background: In developed countries, the prevalence of apical periodontitis (AP) varies from 20% to 50% for reasons that could be associated with the apical periodontitis microbiota ecology. (2) Methods: We performed a clinical study in the Odontology department of Toulouse hospital in France, to sequence the 16S rRNA gene of AP microbiota and collect clinical parameters from 94 patients. Forty-four patients were characterized with a PAI (periapical index of AP severity) score lower or equal to 3, while the others had superior scores (n = 50). (3) Results: The low diversity of granuloma microbiota is associated with the highest severity (PAI = 5) of periapical lesions (Odds Ratio 4.592, IC 95% [1.6329; 14.0728]; p = 0.001; notably, a lower relative abundance of Burkholderiaceae and a higher relative abundance of Pseudomonas and Prevotella). We also identified that high blood pressure (HBP) is associated with the increase in PAI scores. (4) Conclusions: Our data show that a low diversity of bacterial ecology of the AP is associated with severe PAI scores, suggesting a causal mechanism. Furthermore, a second risk factor was blood pressure associated with the severity of apical periodontitis.


Subject(s)
Hypertension , Microbiota , Periapical Periodontitis , Humans , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Microbiota/genetics
6.
BMC Microbiol ; 23(1): 34, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717776

ABSTRACT

BACKGROUND: Gut microbiota is involved in the development of liver diseases such as fibrosis. We and others identified that selected sets of gut bacterial DNA and bacteria translocate to tissues, notably the liver, to establish a non-infectious tissue microbiota composed of microbial DNA and a low frequency live bacteria. However, the precise set of bacterial DNA, and thereby the corresponding taxa associated with the early stages of fibrosis need to be identified. Furthermore, to overcome the impact of different group size and patient origins we adapted innovative statistical approaches. Liver samples with low liver fibrosis scores (F0, F1, F2), to study the early stages of the disease, were collected from Romania(n = 36), Austria(n = 10), Italy(n = 19), and Spain(n = 17). The 16S rRNA gene was sequenced. We considered the frequency, sparsity, unbalanced sample size between cohorts to identify taxonomic profiles and statistical differences. RESULTS: Multivariate analyses, including adapted spectral clustering with L1-penalty fair-discriminant strategies, and predicted metagenomics were used to identify that 50% of liver taxa associated with the early stage fibrosis were Enterobacteriaceae, Pseudomonadaceae, Xanthobacteriaceae and Burkholderiaceae. The Flavobacteriaceae and Xanthobacteriaceae discriminated between F0 and F1. Predicted metagenomics analysis identified that the preQ0 biosynthesis and the potential pathways involving glucoryranose and glycogen degradation were negatively associated with liver fibrosis F1-F2 vs F0. CONCLUSIONS: Without demonstrating causality, our results suggest first a role of bacterial translocation to the liver in the progression of fibrosis, notably at the earliest stages. Second, our statistical approach can identify microbial signatures and overcome issues regarding sample size differences, the impact of environment, and sets of analyses. TRIAL REGISTRATION: TirguMECCH ROLIVER Prospective Cohort for the Identification of Liver Microbiota, registration 4065/2014. Registered 01 01 2014.


Subject(s)
Liver Cirrhosis , Microbiota , Humans , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Prospective Studies , Fibrosis
7.
Diagnostics (Basel) ; 11(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34441309

ABSTRACT

The oral cavity is host to a complex and diverse microbiota community which plays an important role in health and disease. Major oral infections, i.e., caries and periodontal diseases, are both responsible for and induced by oral microbiota dysbiosis. This dysbiosis is known to have an impact on other chronic systemic diseases, whether triggering or aggravating them, making the oral microbiota a novel target in diagnosing, following, and treating systemic diseases. In this review, we summarize the major roles that oral microbiota can play in systemic disease development and aggravation and also how novel tools can help investigate this complex ecosystem. Finally, we describe new therapeutic approaches based on oral bacterial recolonization or host modulation therapies. Collaboration in diagnosis and treatment between oral specialists and general health specialists is of key importance in bridging oral and systemic health and disease and improving patients' wellbeing.

8.
Diagnostics (Basel) ; 11(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919425

ABSTRACT

The aim of this study was to analyze the link between oral microbiota and obesity in humans. We conducted a pilot study including 19 subjects with periodontitis divided into two groups: normo-weighted subjects (NWS) with a body mass index (BMI) between 20 and 25 (n = 9) and obese subjects (OS) with a BMI > 30 (n = 10). Obesity was associated with a poor oral health status characterized by an increased number of missing teeth and a higher score of periodontal-support loss associated with dysbiotic oral microbiota (39.45 ± 3.74 vs. 26.41 ± 11.21, p = 0.03 for the Chao 1 index). Oral microbiota taxonomic analysis showed that the abundance of the Capnocytophaga genus was higher (2.47% ± 3.02 vs. 0.27% ± 0.29, p = 0.04) in OS compared to NWS. Obese females (OF) were characterized by an increase in the Streptococcus genus (34.12% ± 14.29 vs. 10.55% ± 10.42, p = 0.05) compared to obese males (OM), where the Neisseria genus was increased (5.75% ± 5.03 vs. 58.05% ± 30.64, p = 0.008). These first data suggest that sex/gender is determinant in the link between oral dysbiotic microbiota and obesity in patients with periodontitis. Our results could lead to recommendations concerning therapeutic strategies for obese patients with periodontitis following the sex/gender.

9.
Rev Endocr Metab Disord ; 20(4): 449-459, 2019 12.
Article in English | MEDLINE | ID: mdl-31741266

ABSTRACT

It has recently become evident that the periodontium (gingiva, desmodontal ligament, cementum and alveolar bone) and the associated microbiota play a pivotal role in regulating human health and diseases. The oral cavity is the second largest microbiota in the body with around 500 different bacterial species identified today. When disruption of oral cavity and dysbiosis occur, the proportion of strict anaerobic Gram-negative bacteria is then increased. Patients with periodontitis present 27 to 53% more risk to develop diabetes than the control population suggesting that periodontitis is an aggravating factor in the incidence of diabetes. Moreover, dysbiosis of oral microbiota is involved in both periodontal and metabolic disorders (cardiovascular diseases, dyslipidaemia …). The oral diabetic dysbiosis is characterized by a specific bacteria Porphyromonas, which is highly expressed in periodontal diseases and could exacerbate insulin resistance. In this review, we will address the nature of the oral microbiota and how it affects systemic pathologies with a bidirectional interaction. We also propose that using prebiotics like Akkermansia muciniphila may influence oral microbiota as novel therapeutic strategies. The discovery of the implication of oral microbiota for the control of metabolic diseases could be a new way for personalized medicine.


Subject(s)
Metabolic Diseases/microbiology , Mouth/microbiology , Periodontitis/microbiology , Animals , Humans , Metabolic Diseases/metabolism , Mouth/metabolism , Periodontitis/metabolism , Risk Factors
10.
J Dent ; 79: 53-60, 2018 12.
Article in English | MEDLINE | ID: mdl-30292825

ABSTRACT

OBJECTIVE: Elite athletes are prone to develop oral diseases, which could increase the risk for injuries. The aim of this study was to evaluate the oral health and the composition of oral microbiota of elite rugby players compared to the general population. METHODS: We set up a case-control study by screening 24 professional rugby players (PRG) and 22 control patients (CG) for dental and gingival examinations and performed a taxonomic analysis and a predicted functional analysis of oral microbiota. RESULTS: The Decay, Missing and Filled (DMF) teeth index (5.54 ± 6.18 versus 2.14 ± 3.01; p = 0.01) and the frequency of gingivitis (58,33% versus 13.63%) were significantly increased in PRG compared to CG. PRG were characterized by a dysbiotic oral microbiota (Shannon Index: 3.32 ± 0.62 in PRG versus 3.79 ± 0.68 in CG; p = 0.03) with an increase of Streptococcus (58.43 ± 16.84 versus 42.60 ± 17.45; p = 0.005), the main genus implicated in caries. Predicted metagenomics of oral microbiota in rugby players was suggestive of a cariogenic metagenome favourable to the development of caries. CONCLUSIONS: Our study shows that the oral health of PRG was poorer than the general population. PRG are characterized by a dysbiotic oral microbiota with an increase of the relative abundance of Streptococcus genus, positively correlated to the weight and negatively correlated to the diversity of oral microbiota. CLINICAL SIGNIFICANCE: Dental screening should be included in the medical follow-up of professional rugby players as a part of their health management. New strategies such as using probiotics like Lactobacillus could help to control the dysbiosis of oral microbiota.


Subject(s)
Athletes , Microbiota , Oral Health , Case-Control Studies , Football , Humans , Sports
SELECTION OF CITATIONS
SEARCH DETAIL
...