Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Appl Eng Mater ; 1(10): 2745-2751, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37927948

ABSTRACT

Passive water transport by taking advantage of capillary forces is vital for various applications such as solar-driven interfacial evaporation, evaporative cooling, and atmospheric water harvesting. Surface engineering and structure design with a hydrophilic surface and enhanced capillary force will facilitate passive water transport. Herein, we demonstrate a hydrophilic Cu/CuO foil-based roll for accelerated water transportation. The roll was fabricated by rolling up a typical 2D Cu/CuO film, which transforms the water climbing behavior by significantly enhancing the capillary force between each Cu/CuO film layer. The simple spatial transformation for a 2D film, from planar foil to 3D structure, has extensively facilitated water transportation performance and broadened its practical application potential. The Cu/CuO film with a blade-like nanostructure and excellent hydrophilicity ensures water supply to a limited area, while the capillary effect between different layers of the Cu/CuO foil extends the water transportation height. Consequently, the Cu/CuO foil-based roll demonstrated a high fluidic transport velocity. This design derived from the 2D planar film can be potentially employed for a large range of applications such as evaporating in a confined space and evaporation-driven energy harvest.

2.
PLoS Pathog ; 18(9): e1010713, 2022 09.
Article in English | MEDLINE | ID: mdl-36107831

ABSTRACT

Enteric microbial pathogens, including Escherichia coli, Shigella and Cryptosporidium species, take a particularly heavy toll in low-income countries and are highly associated with infant mortality. We describe here a means to display anti-infective agents on the surface of a probiotic bacterium. Because of their stability and versatility, VHHs, the variable domains of camelid heavy-chain-only antibodies, have potential as components of novel agents to treat or prevent enteric infectious disease. We isolated and characterized VHHs targeting several enteropathogenic E. coli (EPEC) virulence factors: flagellin (Fla), which is required for bacterial motility and promotes colonization; both intimin and the translocated intimin receptor (Tir), which together play key roles in attachment to enterocytes; and E. coli secreted protein A (EspA), an essential component of the type III secretion system (T3SS) that is required for virulence. Several VHHs that recognize Fla, intimin, or Tir blocked function in vitro. The probiotic strain E. coli Nissle 1917 (EcN) produces on the bacterial surface curli fibers, which are the major proteinaceous component of E. coli biofilms. A subset of Fla-, intimin-, or Tir-binding VHHs, as well as VHHs that recognize either a T3SS of another important bacterial pathogen (Shigella flexneri), a soluble bacterial toxin (Shiga toxin or Clostridioides difficile toxin TcdA), or a major surface antigen of an important eukaryotic pathogen (Cryptosporidium parvum) were fused to CsgA, the major curli fiber subunit. Scanning electron micrographs indicated CsgA-VHH fusions were assembled into curli fibers on the EcN surface, and Congo Red binding indicated that these recombinant curli fibers were produced at high levels. Ectopic production of these VHHs conferred on EcN the cognate binding activity and, in the case of anti-Shiga toxin, was neutralizing. Taken together, these results demonstrate the potential of the curli-based pathogen sequestration strategy described herein and contribute to the development of novel VHH-based gut therapeutics.


Subject(s)
Bacterial Toxins , Cryptosporidiosis , Cryptosporidium , Enteropathogenic Escherichia coli , Probiotics , Single-Domain Antibodies , Humans , Antigens, Surface , Congo Red , Flagellin , Type III Secretion Systems , Virulence Factors/genetics
3.
ACS Appl Mater Interfaces ; 13(36): 42832-42842, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34469114

ABSTRACT

Solar-driven interfacial steam generation provides an opportunity for solar harvesting and freshwater yield as a promising and eco-friendly technology. Here, we demonstrate a sustainable, nontoxic, and highly efficient fully biomass-based GG/CI hydrogel evaporator consisting of gellan gum (GG) hydrogel as the matrix and cuttlefish ink (CI) as the photothermal material. Induced by the ice-template method and freeze-drying method, vertically aligned microchannels are generated along the ice crystal growth direction. Efficient photothermal conversion is enabled by the natural black cuttlefish ink powder and enhanced by the light trapping effect within vertical microchannels. The hydrophilic property of the gellan gum hydrogel and water capillary force in those microchannels boost water pumping to the top interfacial evaporation region. Effective rapid salt self-cleaning behavior is achieved due to the rapid ion diffusion within vertical microchannels. An evaporation rate of 3.1 kg m-2 h-1 under one sun irradiance is demonstrated by this fully biomass-based GG/CI hydrogel evaporator. This work offers a promising alternative for eco-friendly and sustainable freshwater generation with abundant natural biomasses.

4.
Biomacromolecules ; 20(12): 4476-4484, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31644270

ABSTRACT

Hydrogels are attracting increasing attention due to their potential use in various fields. However, most of the existing hydrogels have limitations in either dissipating mechanical energy or maintaining high stretchability under deformation, thus do not possess high mechanical properties. Herein, poly(vinyl alcohol) (PVA)-tannic acid (TA) hydrogels with both high mechanical strength and stretchability were obtained via a step-by-step physical cross-linking and molecular alignment method. Saline-triggered physical interactions serve as "sacrifice domains" to dissipate energy and endow PVA-based hydrogel with high mechanical strength (≈16 MPa) and stretchability (≈1000%). Due to the reversible arranging and disassociating property of physical interactions, PVA-TA hydrogels show excellent shape memory performance. We further demonstrated an effective approach to fabricate strong and aligned PVA-TA thread. The resultant well-aligned PVA-TA dry thread reveals an ultrahigh mechanical tensile strength of up to 750 MPa, nearly 45 times higher than PVA-TA thread with no alignment. Wide-angle X-ray two-dimensional diffraction images further confirmed the alignment of PVA fibers in stretching direction. In addition, we applied the PVA-TA hydrogel as suture and evaluated the cytotoxicity and biocompatibility of the PVA-TA suture.


Subject(s)
Cross-Linking Reagents/chemistry , Hydrogels , Polyvinyl Alcohol/chemistry , Stress, Mechanical , Tannins/chemistry , Tensile Strength , Hydrogels/chemical synthesis , Hydrogels/chemistry
5.
J Colloid Interface Sci ; 543: 9-16, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30772536

ABSTRACT

Interfaces play an important and often limiting role in the mechanical, thermal, and electrical performance of composite materials. Here we suggest a novel method to improve the interfacial interaction in polypropylene-alumina composites using single-walled carbon nanotubes (SWNTs) to nucleate lamellar crystals at the interface. Macroscopic alumina substrates are used to determine the ideal crystallization parameters and investigate the kinetics of crystal growth. SWNTs are uniformly adsorbed to the interface via Van der Waals interactions and lamellar crystals are grown on the surface using isothermal solution processing techniques. Avrami analysis of crystal surface coverage was used to confirm one-dimensional transcrystalline growth commonly seen with SWNT nucleated crystals. Scanning electron microscopy was used to confirm shish-kebab structures present at the SWNT-polypropylene interface. The determined crystallization parameters were used on colloidal solutions of alumina platelets to successfully create uniformly coated particles with an improved interface. This method shows promise for improving the interphase of semicrystalline polymer-ceramic composites to achieve excellent material properties.

6.
Nature ; 554(7691): 224-228, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29420466

ABSTRACT

Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites). Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction. However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications. Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood. However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken. Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability. Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and Na2SO3 followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres. This strategy is shown to be universally effective for various species of wood. Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative.


Subject(s)
Wood/chemistry , Alloys/chemistry , Cell Wall/chemistry , Cellulose/chemistry , Hot Temperature , Lignin/chemistry , Lignin/isolation & purification , Metals/chemistry , Molecular Weight , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Sodium Hydroxide/chemistry , Sulfites/chemistry , Tensile Strength , Wood/classification
7.
Adv Mater ; 29(21)2017 Jun.
Article in English | MEDLINE | ID: mdl-28370468

ABSTRACT

Transparent films or substrates are ubiquitously used in photonics and optoelectronics, with glass and plastics as traditional choice of materials. Transparent films made of cellulose nanofibers are reported recently. However, all these films are isotropic in nature. This work, for the first time, reports a remarkably facile and effective approach to fabricating anisotropic transparent films directly from wood. The resulting films exhibit an array of exceptional optical and mechanical properties. The well-aligned cellulose nanofibers in natural wood are maintained during delignification, leading to an anisotropic film with high transparency (≈90% transmittance) and huge intensity ratio of transmitted light up to 350%. The anisotropic film with well-aligned cellulose nanofibers has a mechanical tensile strength of up to 350 MPa, nearly three times of that of a film with randomly distributed cellulose nanofibers. Atomistic mechanics modeling further reveals the dependence of the film mechanical properties on the alignment of cellulose nanofibers through the film thickness direction. This study also demonstrates guided liquid transport in a mesoporous, anisotropic wood film and its possible application in enabling new nanoelectronic devices. These unique and highly desirable properties of the anisotropic transparent film can potentially open up a range of green electronics and nanofluidics.

8.
J Mech Behav Biomed Mater ; 65: 552-564, 2017 01.
Article in English | MEDLINE | ID: mdl-27697717

ABSTRACT

Synthetic gel-spun collagen and collagen/nano-carbon fibers were found to exhibit structural mimicry comparable to native tendons. X-ray scattering and microscopy analyses are used to characterize the molecular and fibrillar alignment in the synthetic fibers, where D-banding is observed throughout the spun fibers - consistent with native collagen. For the composite collagen/nano-carbon fibers, the morphology and dispersion quality of the nano-carbons within was found to play a significant role in influencing collagen molecular ordering and fibril alignment. Fibrillar and molecular alignment was also better preserved during elongation of the composites as compared to the control collagen fibers. These results show the structural influence of a rigid inclusion on the collagen fibril structure. Both dry- and wet-state tensile testing were performed on the collagen fibers, and these results show behavior comparable to the native materials. Dry-state tests also reveal interfacial interaction between the nano-fillers and the collagen fibrils through theoretical analysis. Wet-state tensile testing indicates the structure-property behavior of the mimetic hierarchical structure within the synthetic fibers.


Subject(s)
Biomimetic Materials/analysis , Carbon/analysis , Collagen/analysis , Nanotubes, Carbon/analysis , Carbon Fiber , Materials Testing , Tendons , Tensile Strength
9.
J Phys Chem B ; 118(31): 9476-85, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25011016

ABSTRACT

A combination of computational and experimental methods was implemented to understand and confirm that conformational changes of a polymer [specifically polyacrylonitrile (PAN)] vary with the dispersion quality and confinement between single-wall carbon nanotubes (SWNT) in the composite fibers. A shear-flow gel-spinning approach was utilized to produce PAN-based composite fibers with high concentration (i.e., loading of 10 wt %) of SWNT. Dispersion qualities of SWNT ranging from low to high were identified in the fibers, and their effects on the structural morphologies and mechanical properties of the composites were examined. These results show that, as the SWNT dispersion quality in terms of distribution in the fiber and exfoliation increases, PAN conformations were confined to the extended-chain form. Full atomistic computational results show that the surface interaction energy between isolated PAN and SWNT was not preferred, leading to the self-agglomeration of PAN. However, confinement of the polymer chains between SWNT bundles or individual tubes (i.e., molecular crowding) resulted in large increases in the PAN-SWNT interaction energy. In other words, the crowding of polymer chains by the SWNT at high concentrations can promote extended-chain conformational development during fiber spinning. This was also evidenced experimentally by the observance of significantly improved PAN orientation and crystallization in the composite. Ultimately this work provides fundamental insight toward the specific structural changes capable at the polymer/nanotube interface which are important toward improvement of the effective contribution of the SWNT to the mechanical performance of the composite.

10.
ACS Appl Mater Interfaces ; 5(3): 807-14, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23286387

ABSTRACT

In order to improve stress transfer between polymer matrixes and nanofillers, controlling the structure development in the interphase region during composite processing is a necessity. For polyacrylonitrile (PAN)/single-wall carbon nanotubes (SWNT) composites, the formation of the PAN interphase in the presence of the SWNT as a function of processing conditions is studied. Under these conditions, three distinct interfacial coating morphologies of PAN are observed on SWNT. In the semidilute polymer concentration regime subjected to shearing, PAN extended-chain tubular coatings are formed on SWNT. Dilute PAN/SWNT quiescent solutions subjected to cooling yields hybrid periodic shish-kebab structures (first observation for PAN polymer), and dilute PAN/SWNT quiescent solutions subjected to rapid cooling results in the formation of an irregular PAN crystalline coating on the SWNT.

11.
Materials (Basel) ; 6(6): 2543-2577, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-28809290

ABSTRACT

Among the many potential applications of carbon nanotubes (CNT), its usage to strengthen polymers has been paid considerable attention due to the exceptional stiffness, excellent strength, and the low density of CNT. This has provided numerous opportunities for the invention of new material systems for applications requiring high strength and high modulus. Precise control over processing factors, including preserving intact CNT structure, uniform dispersion of CNT within the polymer matrix, effective filler-matrix interfacial interactions, and alignment/orientation of polymer chains/CNT, contribute to the composite fibers' superior properties. For this reason, fabrication methods play an important role in determining the composite fibers' microstructure and ultimate mechanical behavior. The current state-of-the-art polymer/CNT high-performance composite fibers, especially in regards to processing-structure-performance, are reviewed in this contribution. Future needs for material by design approaches for processing these nano-composite systems are also discussed.

12.
ACS Appl Mater Interfaces ; 4(1): 326-30, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22148325

ABSTRACT

Polyethylene crystallization under shear has been studied in the presence of single-wall, few-wall, and multiwall carbon nanotubes (SWNT, FWNT, and MWNT). Polyethylene crystal d-spacings for (110) and (200) planes in polyethylene/carbon nanotubes (CNT) are smaller than in the control polyethylene without CNT and the polymer chain is oriented along the CNT axis. The single-wall carbon nanotube templated polyethylene crystals do not redissolve in boiling xylenes; instead, the chain morphology transforms to an amorphous conformation but remains oriented along the nanotube axis. SWNT crystal peaks were also observed in polyethylene/SWNT fibers.

13.
Macromol Biosci ; 11(7): 875-81, 2011 Jul 07.
Article in English | MEDLINE | ID: mdl-21472979

ABSTRACT

DNA fibers were prepared by solution spinning of DNA in a lysozyme (LSZ) coagulation/gelation bath. Strong positive charges carried by LSZ protein condensed the DNA (strong negative charged) molecules resulting in self-assembly and the formation of fibrillar structures in a gel-like network. DNA/LSZ fibril formation was found to be dependent on the ratio of DNA to LSZ. A minimum 0.1 wt.-% of LSZ was necessary to condense 0.1 wt.-% of DNA into micro-fibrils. Macroscopic fiber spinning was possible by introducing a 0.1 wt.-% DNA aqueous solution into a 0.2 wt.-% LSZ coagulation bath which resulted in fibers with ≈20 µm diameter. Single-walled carbon nanotubes (SWNT) were also incorporated into these fibers to explore the possibility for creating hybrid materials. All DNA-based fibers exhibit strong birefringence confirming molecular orientation along the fiber axis. Due to the presence of LSZ, the fibers exhibit antimicrobial activity against bacteria like Micrococcus lysodeikticus.


Subject(s)
DNA/chemistry , Muramidase/chemistry , Nanostructures , Nanotubes, Carbon/chemistry , Anti-Infective Agents , Birefringence , Circular Dichroism , DNA/ultrastructure , Gels/chemistry , Micrococcus/drug effects , Nanotubes, Carbon/ultrastructure , X-Ray Diffraction
14.
ACS Appl Mater Interfaces ; 2(5): 1331-42, 2010 May.
Article in English | MEDLINE | ID: mdl-20441181

ABSTRACT

Reinforcement efficiency of different types of carbon nanotubes (CNT) have been compared in polyacrylonitrile (PAN) films at nanotube loadings of 5, 10, and 20 wt %. The films are characterized for mechanical, dynamic-mechanical, and thermomechanical properties, electrical conductivity, as well as structural analysis. PAN/CNT composite films exhibit electrical conductivities up to 5500 S/m. Based on X-ray diffraction, PAN crystallinity was shown to increase with the presence of CNT. PAN-CNT interactions in the various composites were compared using conventional activation energy analysis. The strongest physical interaction between PAN and CNT was found in samples containing single-wall carbon nanotubes (SWNT). CNT surface area was also measured using nitrogen gas adsorption and correlated with PAN-CNT composite film mechanical properties, in an effort to better understand PAN-CNT interactions for different CNT morphologies. Solvent behavior of various composite films has also been investigated. The presence of CNT was found to improve PAN solvent resistance.


Subject(s)
Acrylic Resins/chemistry , Manufactured Materials/analysis , Membranes, Artificial , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Materials Testing , Particle Size , Surface Properties
15.
Macromol Rapid Commun ; 31(3): 310-6, 2010 Feb 02.
Article in English | MEDLINE | ID: mdl-21590908

ABSTRACT

PVA/SWNT dispersions yield aloe plant-like crystals, where the leaves are single crystals templated by PVA coated SWNT. Longer growth times (≈18 months) lead to hexagonal rod-like crystals. HR-TEM images show evidence that PVA molecules are aligned parallel to the SWNT axis. WAXD, electron diffraction, and HR-TEM observations of these aloe plant and hexagonal crystals suggests evidence for possible PVA-SWNT epitaxy. Wide-angle and electron diffraction data of these crystals also show that the structure seems to mimic the 2D hexagonal crystal packing of SWNT. PVA lattice images and moiré fringes were also observed in the leaf-like crystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...