Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 64(7): 075008, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30754030

ABSTRACT

3D breast modelling for 2D and 3D breast x-ray imaging would benefit from the availability of digital and physical phantoms that reproduce accurately the complexity of the breast anatomy. While a number of groups have produced digital phantoms with increasing level of complexity, physical phantoms reproducing that software approach have been scarcely developed. One possibility is offered by 3D printing technology. This implies the assessment of the energy dependent absorption index ß of 3D printing materials for absorption based imaging, as well as the assessment of the refractive index decrement, δ, of the printing material, for phase contrast imaging studies, at the energies of interest for breast imaging. In this work we set-up a procedure and performed a series of measurements (at 30, 45 and 60 keV, at the European Synchrotron Radiation Facility) for assessing the relative value of δ with respect to that of breast tissues, for twelve 3D printing materials. The method included propagation based phase contrast 2D imaging and retrieval of the estimated phase shift map, using the Paganin's algorithm. Breast glandular, adipose and skin tissues were used as reference materials of known ratio δ/ß. A percentage difference Δδ was introduced to assess the suitability of the printing materials as tissue substitutes. The accuracy of the method (about 4%) was assessed based on the properties of PMMA and Nylon, acting as gold standard. Results show that, for the above photon energies, ABS is a good substitute for adipose tissue, Hybrid as a substitute of the glandular tissue and PET-G for simulating the skin. We plan to realize a breast phantom manufactured by fused deposition modelling (FDM) technology using ABS, Hybrid and PET-G as substitutes of the glandular and skin tissue and a second phantom by stereolithography (SLA) technology with the resins Flex, Tough and Black.


Subject(s)
Breast/diagnostic imaging , Microscopy, Phase-Contrast/methods , Phantoms, Imaging , Printing, Three-Dimensional/instrumentation , Refractometry , Software , Adipose Tissue/diagnostic imaging , Female , Humans , Skin/diagnostic imaging
2.
Waste Manag ; 27(5): 684-90, 2007.
Article in English | MEDLINE | ID: mdl-16750619

ABSTRACT

Because of the stringent pollutant emission standards introduced with the European Union guidelines for waste incineration, it is very important to optimize the flue gas cleaning systems which are able to result in a low environmental impact according to the emission limits. In this paper a thermochemical model has been proposed for the simulation of the flue gas cleaning system of an RDF incineration plant. The model simulates the operation of the flue-gas treatment section and the combustion section by using a simplified approach. The combustion includes the grate incinerator and the post-combustion chamber, while the cleaning section includes the NO(x) reduction process (urea injection) and the scrubbing of SO(2) and HCl (Ca(OH)(2) as sorbent). The modelling has been conducted by means of ASPEN PLUS code. The simulation results have been validated with the operating data. The model proposed by the authors can be a useful tool in both evaluating the efficiency of the gas cleaning system by verifying the environmental pollution of an incinerator power plant in nominal operating conditions and in forecasting the efficiency of the cleaning system in off-design operating conditions.


Subject(s)
Incineration , Models, Theoretical , Power Plants , Refuse Disposal/methods , Computer Simulation , Gases , Reproducibility of Results , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...