Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(17)2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34500854

ABSTRACT

Patients with triple negative breast cancers (TNBCs)-highly aggressive tumors that do not express estrogen, progesterone, and human epidermal growth factor 2 receptors-have limited treatment options. Fewer than 30% of women with metastatic TNBC survive five years after their diagnosis, with a mortality rate within three months after a recurrence of 75%. Although TNBCs show a higher response to platinum therapy compared to other breast cancers, drug resistance remains a major obstacle; thus, platinum drugs with novel mechanisms are urgently needed. Arsenoplatins (APs) represent a novel class of anticancer agents designed to contain the pharmacophores of the two FDA approved drugs cisplatin and arsenic trioxide (As2O3) as one molecular entity. Here, we present the syntheses, crystal structures, DFT calculations, and antiproliferative activity of iodide analogs of AP-1 and AP-2, i.e., AP-5 and AP-4, respectively. Antiproliferative studies in TNBC cell lines reveal that all AP family members are more potent than cisplatin and As2O3 alone. DFT calculations demonstrate there is a low energy barrier for hydrolysis of the platinum-halide bonds in arsenoplatins, possibly contributing to their higher cytotoxicities compared to cisplatin.


Subject(s)
Antineoplastic Agents/chemistry , Arsenic Trioxide/chemistry , Cisplatin/chemistry , Iodides/chemistry , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Arsenic Trioxide/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Drug Resistance , Drug Therapy, Combination , Humans , Iodides/pharmacology , Molecular Conformation , Pharmaceutical Preparations , Spatial Analysis , Structure-Activity Relationship
2.
J Am Chem Soc ; 141(16): 6453-6457, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30943017

ABSTRACT

Arsenoplatins are adducts of two chemically important anticancer drugs, cisplatin and arsenic trioxide, that have a Pt(II) bond to an As(III) hydroxide center. Screens of the NCI-60 human tumor cell lines reveal that arsenoplatin-1 (AP-1), [Pt(µ-NHC(CH3)O)2ClAs(OH)2], the first representative of this novel class of anticancer agents, displays a superior activity profile relative to the parent drugs As2O3 or cisplatin in a majority of cancer cell lines tested. These activity profiles are important because the success of arsenic trioxide in blood cancers (such as APL) has not been seen in solid tumors due to the rapid clearance of arsenous acid from the body. To understand the biological chemistry of these compounds, we evaluated interactions of AP-1 with the two important classes of biomolecules-proteins and DNA. The first structural studies of AP-1 bound to model proteins reveal that platinum(II) binds the Nε of His in a manner that preserves the Pt-As bond. We find that AP-1 readily enters cells and binds to DNA with an intact Pt-As bond (Pt:As ratio of 1). At longer incubation times, however, the Pt:As ratio in DNA samples increases, suggesting that the Pt-As bond breaks and releases the As(OH)2 moiety. We conclude that arsenoplatin-1 has the potential to deliver both Pt and As species to a variety of hematological and solid cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Arsenic Trioxide/analogs & derivatives , Cisplatin/analogs & derivatives , Organoplatinum Compounds/pharmacology , Antineoplastic Agents/chemistry , Arsenic Trioxide/chemistry , Arsenic Trioxide/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/chemistry , Cisplatin/pharmacology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Organoplatinum Compounds/chemistry , Structure-Activity Relationship
3.
Inorganica Chim Acta ; 4962019 Oct 01.
Article in English | MEDLINE | ID: mdl-32863421

ABSTRACT

Platinum drugs (cisplatin, oxaliplatin, and carboplatin) and arsenic trioxide are the only commercial inorganic non-radioactive anticancer drugs approved by the US Food and Drug Administration. Numerous efforts are underway to take advantage of the synergy between the anticancer activity of cisplatin and arsenic trioxide - two drugs with strikingly different mechanisms of action. These include co-encapsulation of the two drugs in novel nanoscale delivery systems as well as the development of small molecule agents that combine the activity of these two inorganic materials. Several of these new molecular entities containing Pt-As bonds have broad anticancer activity, are robust in physiological buffer solutions, and form stable complexes with biopolymers. This review summarizes results from a number of preclinical studies involving the combination of cisplatin and As2O3, co-encapsulation and nanoformulation efforts, and the chemistry and cytotoxicity of the first member of platinum anticancer agents with an arsenous acid moiety bound to the platinum(II) center: arsenoplatins.

4.
Inorg Chem ; 52(21): 12292-304, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24147771

ABSTRACT

Starting in ancient China and Greece, arsenic-containing compounds have been used in the treatment of disease for over 3000 years. They were used for a variety of diseases in the 20th century, including parasitic and sexually transmitted illnesses. A resurgence of interest in the therapeutic application of arsenicals has been driven by the discovery that low doses of a 1% aqueous solution of arsenic trioxide (i.e., arsenous acid) lead to complete remission of certain types of leukemia. Since Food and Drug Administration (FDA) approval of arsenic trioxide (As2O3) for treatment of acute promyelocytic leukemia in 2000, it has become a front-line therapy in this indication. There are currently over 100 active clinical trials involving inorganic arsenic or organoarsenic compounds registered with the FDA for the treatment of cancers. New generations of inorganic and organometallic arsenic compounds with enhanced activity or targeted cytotoxicity are being developed to overcome some of the shortcomings of arsenic therapeutics, namely, short plasma half-lives and a narrow therapeutic window.


Subject(s)
Antineoplastic Agents/pharmacology , Arsenic/pharmacokinetics , Arsenic/therapeutic use , Antineoplastic Agents/chemistry , Arsenic/toxicity , Arsenic Trioxide , Arsenicals/therapeutic use , Clinical Trials as Topic , Drug Carriers , Humans , Inactivation, Metabolic , Leukemia, Promyelocytic, Acute/drug therapy , Nanoparticles/therapeutic use , Oxides/therapeutic use , Sulfhydryl Compounds/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...