Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Soft Robot ; 10(4): 852-859, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36927095

ABSTRACT

Soft actuators that operate with overpressure have been successfully implemented as soft robotic grippers. Naturally, as these pneumatic devices are prone to cuts, self-healing properties are attractive. Here, we prepared a gripper that operates based on the liquid-gas phase transition of ethanol within its hollow structure. The gripping surface of the device is coated with a self-healing polymer that heals with heat. This gripper also includes a stainless steel wire along the device that heats the entire structure through resistive heating. This design results in a soft robotic gripper that actuates and heals in parallel driven by the same practical stimulus, that is, electricity. Compared to other self-healing soft grippers, this approach has the advantage of being simple and having autonomous self-healing. However, there remain fundamental drawbacks that limit its implementation. The current work critically assesses this overpressure approach and concludes with a broad perspective regarding self-healing soft robotic grippers.

2.
Green Chem ; 25(4): 1658-1671, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36824603

ABSTRACT

In this work, we present a comprehensive study of the electrocatalytic reduction of fructose to sorbitol and mannitol, in a mild alkaline medium (pH = 11.3), with a Cu wire as the cathode. Particular attention was paid to the reaction mechanism, investigated by linear sweep voltammetry (LSV) and chronopotentiometry (CP) coupled with high-pressure liquid chromatography (HPLC). The initial results of our study showed that at the potential where the fructose reduction reaction (FRR) is achieved, competition with the hydrogen evolution reaction (HER) tends to occur, thus limiting the Faradaic efficiency towards the FRR. Moreover, products of chemical conversions were also observed in the liquid electrolyte, originating from the isomerisation of fructose to glucose and mannose and degradation reactions (C-C breaking). Through a thorough optimisation of the reaction parameters, the Faradaic efficiency could be remarkably improved, reaching values >40% and being sustained for 10 h of electrolysis at a current of i = -20 mA. More specifically, the minimisation of the undesired chemical side reactions was achieved by the careful control of the pH (11.3 ± 0.3) using a buffer electrolyte and a titration pump, thus limiting the isomerisation of fructose to glucose and mannose to <2% in 10 h. The electrochemical conversion was optimised via a tailored strategy involving a two-step potential cycling for re-activating the electrocatalyst surface, which allowed achieving 77% electrochemical conversion of fructose to sorbitol and mannitol in 10 h of electrolysis (sorbitol : mannitol = 0.43 : 0.57). This is the first time that the electrocatalytic FRR was achieved with such a high product yield and by using a non-noble metal-based cathode, thus opening up a novel, green route for the conversion of fructose into sorbitol and mannitol. This work also provides relevant, new insight into the crucial parameters that need to be taken into account to achieve the electrocatalytic reduction of saccharides, by gaining control of their complex chemistry in solution.

3.
Chem Commun (Camb) ; 56(95): 14992-14995, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33196068

ABSTRACT

We report a cost-effective, straightforward synthesis of a novel electrocatalyst for the reduction of CO2 to formate, which achieves nearly complete Faradaic efficiency (FE) at an overpotential (η) of 0.88 V under ambient conditions. The electrocatalyst was prepared using bismuth subsalicylate as precursor and consists of bismuth nanoparticles (Bi NPs) with an average diameter of 5.5 nm supported on activated carbon.

4.
IUCrJ ; 6(Pt 5): 804-814, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31576214

ABSTRACT

Owing to their combined open-framework structures and semiconducting properties, two-dimensional thio-stannates show great potential for catalytic and sensing applications. One such class of crystalline materials consists of porous polymeric [Sn3S7 2-] n sheets with molecular cations embedded in-between. The compounds are denoted R-SnS-1, where R is the cation. Dependent on the cation, some R-SnS-1 thio-stannates transition into amorphous phases upon dispersion in water. Knowledge about the fundamental chemical properties of the thio-stannates, including their water stability and the nature of the amorphous products, has not yet been established. This paper presents a time-resolved study of the transition from the crystalline to the amorphous phase of two violet-light absorbing thio-stannates, i.e. AEPz-SnS-1 [AEPz = 1-(2-amino-ethyl)-piperazine] and trenH-SnS-1 [tren = tris-(2-amino-ethyl)-amine]. X-ray total scattering data and pair distribution function analysis reveal no change in the local intralayer coordination during the amorphization. However, a rapid decrease in the crystalline domain sizes upon suspension in water is demonstrated. Although scanning electron microscopy shows no significant decrease of the micrometre-sized particles, transmission electron microscopy reveals the formation of small particles (∼200-400 nm) in addition to the larger particles. The amorphization is associated with disorder of the thio-stannate nanosheet stacking. For example, an average decrease in the interlayer distance (from 19.0 to 15.6 Å) is connected to the substantial loss of the organic components as shown by elemental analysis and X-ray photoelectron spectroscopy. Despite the structural changes, the light absorption properties of the amorphisized R-SnS-1 compounds remain intact, which is encouraging for future water-based applications of such materials.

SELECTION OF CITATIONS
SEARCH DETAIL