Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 106: 368-74, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23598139

ABSTRACT

An analytical method has been developed for the determination of sulfur in coal using direct solid sample analysis in a graphite tube furnace and high-resolution continuum source molecular absorption spectrometry (HR-CS GF MAS). The molecular absorbance of the carbon monosulfide molecule (CS), which is formed in the vaporization stage, has been measured using the rotational line at 258.033 nm. Several chemical modifiers were tested and Ru, applied as permanent modifier was chosen, because it exhibited the best performance. The optimum pyrolysis and vaporization temperatures were found to be 500 °C and 2200 °C, respectively. Aqueous standard solutions prepared from l-cysteine were used for calibration, as the linear regression obtained for this standard was not significantly different from that for a certified coal reference material (CRM) according to a Student t-test. The results obtained for sulfur in three coal CRM and six additional samples also showed no significant difference for the two calibration techniques according to the same statistical test. The sulfur concentration in the coal samples was found between 3.5 mg g(-1) and 33.7 mg g(-1) with a typical repeatability around 10%. The limit of detection for the direct analysis of solid coal samples was better than 0.1 µg S.

2.
Talanta ; 78(2): 333-6, 2009 Apr 30.
Article in English | MEDLINE | ID: mdl-19203591

ABSTRACT

In this study a method for the determination of cadmium in fuel alcohol using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry was developed. The sorbent material used was a vermicompost commonly used as a garden fertilizer. The chemical and flow variables of the on-line preconcentration system were optimized by means of a full factorial design. The selected factors were: sorbent mass, sample pH, buffer concentration and sample flow rate. The optimum extraction conditions were obtained using sample pH in the range of 7.3-8.3 buffered with tris(hydroxymethyl)aminomethane at 50 mmol L(-1), a sample flow rate of 4.5 mL min(-1) and 160 mg of sorbent mass. With the optimized conditions, the preconcentration factor, limit of detection and sample throughput were estimated as 32 (for preconcentration of 10 mL sample), 1.7 microg L(-1) and 20 samples per hour, respectively. The analytical curve was linear from 5 up to at least 50 microg L(-1), with a correlation coefficient of 0.998 and a relative standard deviation of 2.4% (35 microg L(-1), n=7). The developed method was successfully applied to spiked fuel alcohol, and accuracy was assessed through recovery tests, with recovery ranging from 94% to 100%.


Subject(s)
Alcohols/standards , Cadmium/analysis , Energy-Generating Resources/standards , Adsorption , Flow Injection Analysis , Hazardous Substances/analysis , Solid Phase Extraction , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...