Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121802, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36070674

ABSTRACT

Diflunisal (5-(2,4-Difluorophenyl)salicylic acid, DIF), salicylic acid (SAL) derivative, which, on the one hand, is active pharmaceutical ingredient, on the other hand, belongs to the compounds exhibiting excited-state intramolecular proton transfer (ESIPT) behaviour was used to study the drug interactions with poly(vinyl alcohol) (PVA) matrix. For clarifying the nature and mechanisms of the drug-matrix interactions the salicylic acid (SAL) molecule was selected as the model active ESIPT compound, whose physicochemical properties in different media are well understood. The solute-solvent interactions (non-specific (dipole-dipole) versus specific (hydrogen bonding)) of DIF and SAL with different neat solvents were investigated using the steady-state spectroscopic technique. The solvent effect on spectral behaviours of DIF and SAL was analyzed based on the parametric solvent scales. In order to identify functional groups in the PVA matrices, determine the structure present in the studied molecule-PVA system and thus obtain information about the potential interactions between PVA and the studied molecules, the Raman spectra of pure PVA, SAL-PVA and DIF-PVA systems were measured. It has been shown that the molecular structure of the active substance entrapped in the polymer matrix affects the structure of the polymer, i.e., isotactic (SAL-PVA) versus syndiotactic (DIF-PVA) structure. The analysis of drug release kinetics revealed that the DIF is more strongly bound to PVA in comparison to SAL, which confirms conclusions drawn from the analysis of the Raman spectra i.e., the isotactic structure of SAL-PVA material results in a faster initial release process of weakly bound, located on the surface of the polymer SAL molecules.


Subject(s)
Diflunisal , Polyvinyl Alcohol , Hydrogen Bonding , Pharmaceutical Preparations , Polymers/chemistry , Polyvinyl Alcohol/chemistry , Protons , Salicylic Acid , Solvents
2.
Materials (Basel) ; 14(8)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917724

ABSTRACT

The photophysical and photochemical properties of antipyretic drug - paracetamol (PAR) and its two analogs with different substituents (acetanilide (ACT) and N-ethylaniline (NEA)) in 14 solvents of different polarity were investigated by the use of steady-state spectroscopic technique and quantum-chemical calculations. As expected, the results show that the spectroscopic behavior of PAR, ACT, and NEA is highly dependent on the nature of the solute-solvent interactions (non-specific (dipole-dipole) and specific (hydrogen bonding)). To characterize these interactions, the multiparameter regression analysis proposed by Catalán was used. In order to obtain a deeper insight into the electronic and optical properties of the studied molecules, the difference of the dipole moments of a molecule in the ground and excited state were determined using the theory proposed by Lippert, Mataga, McRae, Bakhshiev, Bilot, and Kawski. Additionally, the influence of the solute polarizability on the determined dipole moments was discussed. The results of the solvatochromic studies were related to the observations of the release kinetics of PAR, ACT, and NEA from polyurethane hydrogels. The release kinetics was analyzed using the Korsmayer-Peppas and Hopfenberg models. Finally, the influence of the functional groups of the investigated compounds on the release time from the hydrogel matrix was analyzed.

SELECTION OF CITATIONS
SEARCH DETAIL
...