Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 1030982, 2022.
Article in English | MEDLINE | ID: mdl-36338070

ABSTRACT

Grapevine flowering is an important stage in the epidemiology of Botrytis cinerea, the causal agent of gray mold disease. To prevent infection and to minimize postharvest losses, the control of this necrotrophic fungus is mainly based on chemical fungicides application. However, there is a growing interest in other control alternatives. Among them, the use of beneficial microorganisms appears as an eco-friendly strategy. This study aims to investigate the effect of Paraburkholderia phytofirmans PsJN, root-inoculated or directly sprayed on fruiting cuttings inflorescences to control B. cinerea growth. For this purpose, quantification by real time PCR of Botrytis development, direct effect of PsJN on fungal spore germination and chemotaxis were assayed. Our results showed a significant protective effect of PsJN only by direct spraying on inflorescences. Moreover, we demonstrated an inhibition exerted by PsJN on Botrytis spore germination, effective when there was a direct contact between the two microorganisms. This study showed that PsJN is positively attracted by the pathogenic fungus B. cinerea and forms a biofilm around the fungal hyphae in liquid co-culture. Finally, microscopic observations on fruit cuttings revealed a co-localization of both beneficial and pathogenic microorganisms on grapevine receptacle and stigma that might be correlated with the protective effect induced by PsJN against B. cinerea via a direct antimicrobial effect. Taking together, our findings allowed us to propose PsJN as a biofungicide to control grapevine gray mold disease.

2.
Int J Mol Sci ; 20(22)2019 Nov 16.
Article in English | MEDLINE | ID: mdl-31744149

ABSTRACT

Phenolic compounds are implied in plant-microorganisms interaction and may be induced in response to plant growth-promoting rhizobacteria (PGPRs). Among PGPR, the beneficial bacterium Paraburkholderia phytofirmans PsJN was previously described to stimulate the growth of plants and to induce a better adaptation to both abiotic and biotic stresses. This study aimed to investigate the impact of PsJN on grapevine secondary metabolism. For this purpose, gene expression (qRT-PCR) and profiling of plant secondary metabolites (UHPLC-UV/DAD-MS QTOF) from both grapevine root and leaves were compared between non-bacterized and PsJN-bacterized grapevine plantlets. Our results showed that PsJN induced locally (roots) and systemically (leaves) an overexpression of PAL and STS and specifically in leaves the overexpression of all the genes implied in phenylpropanoid and flavonoid pathways. Moreover, the metabolomic approach revealed that relative amounts of 32 and 17 compounds in roots and leaves, respectively, were significantly modified by PsJN. Once identified to be accumulated in response to PsJN by the metabolomic approach, antifungal properties of purified molecules were validated in vitro for their antifungal effect on Botrytis cinerea spore germination. Taking together, our findings on the impact of PsJN on phenolic metabolism allowed us to identify a supplementary biocontrol mechanism developed by this PGPR to induce plant resistance against pathogens.


Subject(s)
Burkholderiaceae/physiology , Polyphenols/metabolism , Vitis/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Botrytis/physiology , Chromatography, High Pressure Liquid , Discriminant Analysis , Flavonoids/analysis , Flavonoids/metabolism , Flavonoids/pharmacology , Gene Expression Regulation, Plant , Mass Spectrometry , Metabolome , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Plant Roots/microbiology , Polyphenols/analysis , Polyphenols/pharmacology , Principal Component Analysis , Spores, Fungal/drug effects , Vitis/chemistry , Vitis/growth & development
3.
Front Plant Sci ; 7: 1236, 2016.
Article in English | MEDLINE | ID: mdl-27602036

ABSTRACT

Plant innate immunity serves as a surveillance system by providing the first line of powerful weapons to fight against pathogen attacks. Beneficial microorganisms and Microbial-Associated Molecular Patterns might act as signals to trigger this immunity. Burkholderia phytofirmans PsJN, a highly efficient plant beneficial endophytic bacterium, promotes growth in a wide variety of plants including grapevine. Further, the bacterium induces plant resistance against abiotic and biotic stresses. However, no study has deciphered triggered-mechanisms during the tripartite interaction between grapevine, B. phytofirmans PsJN and Botrytis cinerea. Herein, we showed that in contrast with classical rhizobacteria, which are restricted in the root system and act through ISR, B. phytofirmans PsJN is able to migrate until aerial part and forms at leaves surface a biofilm around B. cinerea mycelium to restrict the pathogen. Nevertheless, considering the endophytic level of PsJN in leaves, the plant protection efficacy of B. phytofirmans PsJN could not be explained solely by its direct antifungal effect. Deeper investigations showed a callose deposition, H2O2 production and primed expression of PR1, PR2, PR5, and JAZ only in bacterized-plantlets after pathogen challenge. The presence of PsJN modulated changes in leaf carbohydrate metabolism including gene expression, sugar levels, and chlorophyll fluorescence imaging after Botrytis challenge. Our findings indicated that protection induced by B. phytofirmans PsJN was multifaceted and relied on a direct antifungal effect, priming of defense mechanisms as well as the mobilization of carbon sources in grapevine leaf tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...