Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Mol Sci ; 25(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732256

ABSTRACT

Autosomal polycystic kidney disease (ADPKD) is the most common genetic form of kidney failure, reflecting unmet needs in management. Prescription of the only approved treatment (tolvaptan) is limited to persons with rapidly progressing ADPKD. Rapid progression may be diagnosed by assessing glomerular filtration rate (GFR) decline, usually estimated (eGFR) from equations based on serum creatinine (eGFRcr) or cystatin-C (eGFRcys). We have assessed the concordance between eGFR decline and identification of rapid progression (rapid eGFR loss), and measured GFR (mGFR) declines (rapid mGFR loss) using iohexol clearance in 140 adults with ADPKD with ≥3 mGFR and eGFRcr assessments, of which 97 also had eGFRcys assessments. The agreement between mGFR and eGFR decline was poor: mean concordance correlation coefficients (CCCs) between the method declines were low (0.661, range 0.628 to 0.713), and Bland and Altman limits of agreement between eGFR and mGFR declines were wide. CCC was lower for eGFRcys. From a practical point of view, creatinine-based formulas failed to detect rapid mGFR loss (-3 mL/min/y or faster) in around 37% of the cases. Moreover, formulas falsely indicated around 40% of the cases with moderate or stable decline as rapid progressors. The reliability of formulas in detecting real mGFR decline was lower in the non-rapid-progressors group with respect to that in rapid-progressor patients. The performance of eGFRcys and eGFRcr-cys equations was even worse. In conclusion, eGFR decline may misrepresent mGFR decline in ADPKD in a significant percentage of patients, potentially misclassifying them as progressors or non-progressors and impacting decisions of initiation of tolvaptan therapy.


Subject(s)
Creatinine , Disease Progression , Glomerular Filtration Rate , Polycystic Kidney, Autosomal Dominant , Humans , Female , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/physiopathology , Male , Middle Aged , Adult , Creatinine/blood , Cystatin C/blood , Aged , Tolvaptan/therapeutic use , Clinical Decision-Making
2.
Sci Rep ; 14(1): 5219, 2024 03 03.
Article in English | MEDLINE | ID: mdl-38433228

ABSTRACT

The error of estimated glomerular filtration rate (eGFR) and its consequences in predialysis are unknown. In this prospective multicentre study, 315 predialysis patients underwent measured GFR (mGFR) by the clearance of iohexol and eGFR by 52 formulas. Agreement between eGFR and mGFR was evaluated by concordance correlation coefficient (CCC), total deviation index (TDI) and coverage probability (CP). In a sub-analysis we assessed the impact of eGFR error on decision-making as (i) initiating dialysis, (ii) preparation for renal replacement therapy (RRT) and (iii) continuing clinical follow-up. For this sub-analysis, patients who started RRT due to clinical indications (uremia, fluid overload, etc.) were excluded. eGFR had scarce precision and accuracy in reflecting mGFR (average CCC 0.6, TDI 70% and cp 22%) both in creatinine- and cystatin-based formulas. Variations -larger than 10 ml/min- between mGFR and eGFR were frequent. The error of formulas would have suggested (a) premature preparation for RTT in 14% of stable patients evaluated by mGFR; (b) to continue clinical follow-up in 59% of subjects with indication for RTT preparation due to low GFRm and (c) to delay dialysis in all asymptomatic patients (n = 6) in whom RRT was indicated based on very low mGFR. The error of formulas in predialysis was frequent and large and may have consequences in clinical care.


Subject(s)
Continuous Renal Replacement Therapy , Renal Dialysis , Humans , Glomerular Filtration Rate , Prospective Studies , Creatinine
3.
Int J Obes (Lond) ; 44(5): 1129-1140, 2020 05.
Article in English | MEDLINE | ID: mdl-31641213

ABSTRACT

BACKGROUND: Obesity is an established risk factor for renal disease and for disease progression. Therefore, an accurate determination of renal function is necessary in this population. Renal function is currently evaluated by estimated glomerular filtration rate (GFR) by formulas, a procedure with a proven high variability. Moreover, the adjustment of GFR by body surface area (BSA) confounds the evaluation of renal function. However, the error of using estimated GFR adjusted by BSA has not been properly evaluated in overweight and obese subjects. METHODS: We evaluated the error of 56 creatinine- and/or cystatin-C-based equations and the adjustment of GFR by BSA in 944 subjects with overweight or obesity with or without chronic kidney disease (CKD). The error between estimated (eGFR) and measured GFR (mGFR) was evaluated with statistics of agreement: the total deviation index (TDI), the concordance correlation coefficient (CCC) and the coverage probability (cp). RESULTS: The error of eGFR by any equation was common and wide: TDI averaged 55%, meaning that 90% of estimations ranged from -55 to 55% of mGFR. CCC and cp averaged 0.8 and 26, respectively. This error was comparable between creatinine and cystatin-C-based formulas both in obese or overweight subjects. The error of eGFR was larger in formulas that included weight or height. The adjustment of mGFR or eGFR led to a relevant underestimation of renal function, reaching at least 10 mL/min in 25% of the cases. CONCLUSIONS: In overweight and obese patients, formulas failed in reflecting real renal function. In addition, the adjustment for BSA led to a relevant underestimation of GFR. Both errors may have important clinical consequences. Thus, whenever possible, the use of a gold standard method to measure renal function is recommended. Moreover, the sense of indexing for BSA should be re-considered and probably abandoned.


Subject(s)
Body Surface Area , Glomerular Filtration Rate/physiology , Kidney Function Tests , Obesity , Aged , Creatinine/blood , Creatinine/urine , Cross-Sectional Studies , Cystatin C/blood , Female , Humans , Kidney Function Tests/methods , Kidney Function Tests/standards , Male , Middle Aged , Obesity/complications , Obesity/physiopathology , Overweight/complications , Overweight/physiopathology , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/physiopathology
4.
J Clin Med ; 8(10)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561432

ABSTRACT

Type 2 diabetes mellitus represents 30-50% of the cases of end stage renal disease worldwide. Thus, a correct evaluation of renal function in patients with diabetes is crucial to prevent or ameliorate diabetes-associated kidney disease. The reliability of formulas to estimate renal function is still unclear, in particular, those new equations based on cystatin-C or the combination of creatinine and cystatin-C. We aimed to assess the error of the available formulas to estimate glomerular filtration rate in diabetic patients. We evaluated the error of creatinine and/or cystatin-C based formulas in reflecting real renal function over a wide range of glomerular filtration rate (from advanced chronic kidney disease to hyperfiltration). The error of estimated glomerular filtration rate by any equation was common and wide averaging 30% of real renal function, and larger in patients with measured glomerular filtration rate below 60 mL/min. This led to chronic kidney disease stages misclassification in about 30% of the individuals and failed to detect 25% of the cases with hyperfiltration. Cystatin-C based formulas did not outperform creatinine based equations, and the reliability of more modern algorithms proved to be as poor as older equations. Formulas failed in reflecting renal function in type 2 diabetes mellitus. Caution is needed with the use of these formulas in patients with diabetes, a population at high risk for kidney disease. Whenever possible, the use of a gold standard method to measure renal function is recommended.

5.
Nephrol Dial Transplant ; 34(2): 287-294, 2019 02 01.
Article in English | MEDLINE | ID: mdl-29762739

ABSTRACT

Background: Chronic kidney disease (CKD) affects 10-13% of the population worldwide. CKD classification stratifies patients in five stages of risk for progressive renal disease based on estimated glomerular filtration rate (eGFR) by formulas and albuminuria. However, the reliability of formulas to reflect real renal function is a matter of debate. The effect of the error of formulas in the CKD classification is unclear, particularly for cystatin C-based equations. Methods: We evaluated the reliability of a large number of cystatin C and/or creatinine-based formulas in the definition of the stages of CKD in 882 subjects with different clinical situations over a wide range of glomerular filtration rates (GFRs) (4.2-173.7 mL/min). Results: Misclassification was a constant for all 61 formulas evaluated and averaged 50% for creatinine-based and 35% for cystatin C-based equations. Most of the cases were misclassified as one stage higher or lower. However, in 10% of the subjects, one stage was skipped and patients were classified two stages above or below their real stage. No clinically relevant improvement was observed with cystatin C-based formulas compared with those based on creatinine. Conclusions: The error in the classification of CKD stages by formulas was extremely common. Our study questions the reliability of both cystatin C and creatinine-based formulas to correctly classify CKD stages. Thus the correct classification of CKD stages based on estimated GFR is a matter of chance. This is a strong limitation in evaluating the severity of renal disease, the risk for progression and the evolution of renal dysfunction over time.


Subject(s)
Creatinine/blood , Cystatin C/blood , Nephrology/standards , Renal Insufficiency, Chronic/blood , Adult , Aged , Albuminuria/blood , Disease Progression , Female , Glomerular Filtration Rate , Humans , Male , Middle Aged , Reproducibility of Results , Risk , Severity of Illness Index
6.
Nefrologia ; 37(3): 235-243, 2017.
Article in English, Spanish | MEDLINE | ID: mdl-28648202

ABSTRACT

In recent years there has been a reclassification of hereditary tubulointerstitial renal diseases. The old concepts of nephronoptisis or medullary cystic disease have been reordered based on the discovery of new genes. The 2015 KDIGO guidelines proposed a unification of terminology, diagnostic criteria and monitoring. So far 4genes causing autosomal dominant tubulointerstitial kidney disease have been described: MUC1, UMOD, HNF1B and REN. Although the mutation in each of them causes distinctive features in how they present, all have in common the progressive tubulointerstitial damage and renal fibrosis. In this article, we present a review of the guidelines and the literature, and some practical recommendations for dealing with this disease.


Subject(s)
Nephritis, Interstitial/genetics , Algorithms , Humans , Mutation , Nephritis, Interstitial/diagnosis , Pedigree , Practice Guidelines as Topic
7.
Nefrología (Madr.) ; 37(3): 235-243, mayo-jun. 2017. ilus, tab, graf
Article in Spanish | IBECS | ID: ibc-164637

ABSTRACT

En los últimos años ha habido una reclasificación de las nefropatías tubulointersticiales de base genética. Los antiguos conceptos de nefronoptisis o enfermedad quística medular han sido reordenados con base en el hallazgo de nuevos genes. Las guías KDIGO del 2015 proponen una unificación de terminología, unos criterios diagnósticos y de seguimiento. Hasta el momento se han descrito 4 genes causantes de la nefropatía tubulointersticial autosómica dominante: MUC1, UMOD, HNF1B y REN. Aunque la mutación en cada uno de los genes produce unos rasgos diferenciales en la forma de presentación, todas las formas tienen en común el progresivo daño túbulo-intersticial y la fibrosis renal. En este artículo, se pretende una revisión de las guías, de la literatura y ofrecer unas recomendaciones prácticas para el manejo de esta enfermedad (AU)


In recent years there has been a reclassification of hereditary tubulointerstitial renal diseases. The old concepts of nephronoptisis or medullary cystic disease have been reordered based on the discovery of new genes. The 2015 KDIGO guidelines proposed a unification of terminology, diagnostic criteria and monitoring. So far 4genes causing autosomal dominant tubulointerstitial kidney disease have been described: MUC1, UMOD, HNF1Band REN. Although the mutation in each of them causes distinctive features in how they present, all have in common the progressive tubulointerstitial damage and renal fibrosis. In this article, we present a review of the guidelines and the literature, and some practical recommendations for dealing with this disease (AU)


Subject(s)
Humans , Nephritis, Interstitial/genetics , Polycystic Kidney, Autosomal Dominant/genetics , Disease Progression , Biopsy , Nephritis, Interstitial/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...