Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36901177

ABSTRACT

Climate change is currently regarded as the greatest global threat to human health, and its health-related consequences take different forms according to age, sex, socioeconomic level, and type of territory. The aim of this study is to ascertain the differences in vulnerability and the heat-adaptation process through the minimum mortality temperature (MMT) among the Spanish population aged ≥65 years by territorial classification. A retrospective, longitudinal, ecological time-series study, using provincial data on daily mortality and maximum daily temperature across the period 1983-2018, was performed, differentiating between urban and nonurban populations. The MMTs in the study period were higher for the ≥65-year age group in urban provinces, with a mean value of 29.6 °C (95%CI 29.2-30.0) versus 28.1 °C (95%CI 27.7-28.5) in nonurban provinces. This difference was statistically significant (p < 0.05). In terms of adaptation levels, higher average values were obtained for nonurban areas, with values of 0.12 (95%CI -0.13-0.37), than for urban areas, with values of 0.09 (95%CI -0.27-0.45), though this difference was not statistically significant (p < 0.05). These findings may contribute to better planning by making it possible to implement more specific public health prevention plans. Lastly, they highlight the need to conduct studies on heat-adaptation processes, taking into account various differential factors, such as age and territory.


Subject(s)
Acclimatization , Hot Temperature , Humans , Aged , Spain/epidemiology , Retrospective Studies , Adaptation, Physiological , Mortality
2.
Article in English | MEDLINE | ID: mdl-36674069

ABSTRACT

The capacity for adaptation to climate change is limited, and the elderly rank high among the most exposed population groups. To date, few studies have addressed the issue of heat adaptation, and little is known about the long-term effects of exposure to heat. One indicator that allows the ascertainment of a population's level of adaptation to heat is the minimum mortality temperature (MMT), which links temperature and daily mortality. The aim of this study was to ascertain, firstly, adaptation to heat among persons aged ≥ 65 years across the period 1983 to 2018 through analysis of the MMT; and secondly, the trend in such adaptation to heat over time with respect to the total population. A retrospective longitudinal ecological time series study was conducted, using data on daily mortality and maximum daily temperature across the study period. Over time, the MMT was highest among elderly people, with a value of 28.6 °C (95%CI 28.3-28.9) versus 28.2 °C (95%CI 27.83-28.51) for the total population, though this difference was not statistically significant. A total of 62% of Spanish provinces included populations of elderly people that had adapted to heat during the study period. In general, elderly persons' level of adaptation registered an average value of 0.11 (°C/decade).


Subject(s)
Thermotolerance , Aged , Humans , Spain/epidemiology , Retrospective Studies , Temperature , Hot Temperature , Mortality
3.
Environ Res ; 216(Pt 3): 114674, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36341795

ABSTRACT

Food security and food safety are two concepts related to food risks. The majority of studies regarding climate change and food risks are related to the security of food provision. The objective of this study was to review the current state of knowledge of the influence of climate change on food production and food safety. The literature search was carried out by specifying each area individually (crops, ranching, fishing, food safety, etc.), including the term "climate change" and other specific factors such as CO2, ozone, biotoxins, mortality, heat, etc.) The increase in carbon dioxide concentrations together with the increase in global temperatures theoretically produces greater yields in crops destined for human and animal consumption. However, the majority of studies have shown that crop yields are decreasing, due to the increase in the frequency of extreme weather events. Furthermore, these climate anomalies are irregularly distributed, with a greater impact on developing countries that have a lower capacity to address climate change. All of these factors result in greater uncertainty in terms of food provision and market speculation. An increase in average temperatures could lead to an increased risk of proliferation of micro-organisms that produce food-borne illnesses, such as salmonella and campylobacter. However, in developed countries with information systems that document the occurrence of these diseases over time, no clear trend has been determined, in part because of extensive food conservation controls.


Subject(s)
Climate Change , Foodborne Diseases , Animals , Humans , Crops, Agricultural , Food Safety , Temperature
4.
Int J Biometeorol ; 59(9): 1213-22, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25399358

ABSTRACT

The relationship between heat waves and mortality has been widely described, but there are few studies using long daily data on specific-cause mortality. This study is undertaken in central Spain and analysing natural causes, circulatory and respiratory causes of mortality from 1975 to 2008. Time-series analysis was performed using ARIMA models, including data on specific-cause mortality and maximum and mean daily temperature and mean daily air pressure. The length of heat waves and their chronological number were analysed. Data were stratified in three decadal stages: 1975-1985, 1986-1996 and 1997-2008. Heat-related mortality was triggered by a threshold temperature of 37 °C. For each degree that the daily maximum temperature exceeded 37 °C, the percentage increase in mortality due to circulatory causes was 19.3 % (17.3-21.3) in 1975-1985, 30.3 % (28.3-32.3) in 1986-1996 and 7.3 % (6.2-8.4) in 1997-2008. The increase in respiratory cause ranged from 12.4 % (7.8-17.0) in the first period, to 16.3 % (14.1-18.4) in the second and 13.7 % (11.5-15.9) in the last. Each day of heat-wave duration explained 5.3 % (2.6-8.0) increase in respiratory mortality in the first period and 2.3 % (1.6-3.0) in the last. Decadal scale differences exist for specific-causes mortality induced by extreme heat. The impact on heat-related mortality by natural and circulatory causes increases between the first and the second period and falls significantly in the last. For respiratory causes, the increase is no reduced in the last period. These results are of particular importance for the estimation of future impacts of climate change on health.


Subject(s)
Cause of Death/trends , Extreme Heat/adverse effects , Mortality/trends , Aged , Humans , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...