Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 773: 145374, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33582328

ABSTRACT

Conventional active sludge (AS) process at municipal centralized wastewater treatment facilities may exhibit little pharmaceuticals (PhACs) removal efficiencies when treating hospital wastewater (HWW). Therefore, a dedicated efficient wastewater treatment at the source point is recommended. In this sense, advanced oxidation processes (AOPs) and fungal treatment (FG) have evidenced promising results in degrading PhACs. The coupling of the AOP based on UV/H2O2 treatment with biological treatment (AS or FG) treating a real non-sterile HWW, was evaluated in this work. In addition, a coagulation-flocculation pretreatment was applied to improve the efficiency of all approaches. Twenty-two PhACs were detected in raw HWW, which were effectively removed (93-95%) with the combination of any of the biological treatment followed by UV/H2O2 treatment. Similar removal results (94%) were obtained when placing UV/H2O2 treatment before FG, while a lower removal (83%) was obtained in the combination of UV/H2O2 followed by AS. However, the latest was the only treatment combination that achieved a decrease in the toxicity of water. Moreover, deconjugation of conjugated PhACs has been suggested for ofloxacin and lorazepam after AS treatment, and for ketoprofen after fungal treatment. Monitoring of carbamazepine and its transformation products along the treatment allowed to identify the same carbamazepine degradation pathway in UV/H2O2 and AS treatments, unlike fungal treatment, which followed another degradation route.


Subject(s)
Water Pollutants, Chemical , Water Purification , Hospitals , Hydrogen Peroxide , Oxidation-Reduction , Sewage , Ultraviolet Rays , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis
2.
J Biol Eng ; 13: 47, 2019.
Article in English | MEDLINE | ID: mdl-31160922

ABSTRACT

BACKGROUND: Hospital wastewater is commonly polluted with high loads of pharmaceutically active compounds, which pass through wastewater treatment plants (WWTPs) and end up in water bodies, posing ecological and health risks. White-rot fungal treatments can cope with the elimination of a wide variety of micropollutants while remaining ecologically and economically attractive. Unfortunately, bacterial contamination has impeded so far a successful implementation of fungal treatment for real applications. RESULTS: This work embodied a 91-day long-term robust continuous fungal operation treating real non-sterile hospital wastewater in an air pulsed fluidized bed bioreactor retaining the biomass. The hydraulic retention time was 3 days and the ageing of the biomass was avoided through partial periodic biomass renovation resulting in a cellular retention time of 21 days. Evolution of microbial community and Trametes abundance were evaluated. CONCLUSIONS: The operation was able to maintain an average pharmaceutical load removal of over 70% while keeping the white-rot fungus active and predominant through the operation.

3.
Water Res ; 138: 137-151, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29579480

ABSTRACT

Micropollutants are a diverse group of compounds that are detected at trace concentrations and may have a negative effect on the environment and/or human health. Most of them are unregulated contaminants, although they have raised a concern in the scientific and global community and future regulation might be written in the near future. Several approaches have been tested to remove micropollutants from wastewater streams. In this manuscript, a focus is placed in reactor biological treatments that use white-rot fungi. A critical review of white-rot fungal-based technologies for micropollutant removal from wastewater has been conducted, several capabilities and limitations of such approaches have been identified and a range of solutions to overcome most of the limitations have been reviewed and/or proposed. Overall, this review argues that white-rot fungal reactors could be an efficient technology to remove micropollutants from specific wastewater streams.


Subject(s)
Basidiomycota/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Wastewater
4.
J Environ Manage ; 212: 415-423, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29455149

ABSTRACT

Micropollutants such as pharmaceutical active compounds, present at high concentration in hospital wastewater (HWW), pose both environmental and human health challenges. Fungal reactors can effectively remove such contaminants and produce non-toxic effluents, but their ability to operate for a long period of time is yet to be demonstrated in real hospital wastewater. Several process variables need to be studied beforehand. Here, variables: pellet size, aeration and carbon-to-nitrogen ratio are studied in continuous operations with real HWW. Moreover, a novel strategy for inoculum production that could reduce economical and operational costs is proposed and tested. Optimum pellet size was found to be 2 mm and an aeration of 0.8 L min-1 was needed to maintain fungal viability. The carbon-to-nitrogen ratio of 7.5 was selected and the pellet production time was reduced from 6 to 3 days. The novel low-cost inoculum preparation produced pellets with the same characteristics as the traditionally prepared ones.


Subject(s)
Hospitals , Waste Disposal, Fluid , Wastewater , Bioreactors , Nitrogen , Trametes
5.
Sci Total Environ ; 500-501: 235-42, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25217998

ABSTRACT

Use of agrochemicals is a worldwide practice that exerts an important effect on the environment; therefore the search of approaches for the elimination of such pollutants should be encouraged. The degradation of the insecticides imiprothrin (IP) and cypermethrin (CP), the insecticide/nematicide carbofuran (CBF) and the antibiotic of agricultural use oxytetracycline (OTC) were assayed with the white rot fungus Trametes versicolor. Experiments with fungal pellets demonstrated extensive degradation of the four tested agrochemicals, at rates that followed the pattern IP>OTC>CP>CBF. In vitro assays with laccase-mediator systems showed that this extracellular enzyme participates in the transformation of IP but not in the cases of CBF and OTC. On the other hand, in vivo studies with inhibitors of cytochrome P450 revealed that this intracellular system plays an important role in the degradation of IP, OTC and CBF, but not for CP. The compounds 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (DCCA) and 3-phenoxybenzoic acid (PBA) were detected as transformation products of CP, as a result of the breakdown of the molecule. Meanwhile, 3-hydroxycarbofuran was detected as a transformation product of CBF; this metabolite tended to accumulate during the process, nonetheless, the toxicity of the system was effectively reduced. Simultaneous degradation of CBF and OTC showed a reduction in toxicity; similarly, when successive additions of OTC were done during the slower degradation of CBF, the fungal pellets were able to degrade both compounds. The simultaneous degradation of the four compounds successfully took place with minimal inhibition of fungal activity and resulted in the reduction of the global toxicity, thus supporting the potential use of T. versicolor for the treatment of diverse agrochemicals.


Subject(s)
Agrochemicals/metabolism , Insecticides/metabolism , Trametes/metabolism , Biodegradation, Environmental
SELECTION OF CITATIONS
SEARCH DETAIL
...