Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(42): 29735-29748, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37822657

ABSTRACT

The objective of this study was to assess the efficacy of fungal chitosan-polystyrene-Co-nanocomposites (FCPNC) as a material for the adsorptive removal of cadmium (Cd) ions from aqueous solutions. The synthesis and characterization of FCPNC were accomplished using various analytical techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, and dynamic light scattering (DLS). The effectiveness of this adsorbent in removing Cd(ii) species from solution matrices was systematically investigated, resulting in the achievement of a maximum adsorption capacity of approximately 112.36 mg g-1. This high adsorption capacity was detected using the following operational parameters: solution pH equals 5.0, 60 min as a contact time between the adsorbent and Cd(ii) solution, Cd initial concentration of 50 ppm, adsorbent dosage of 0.5 g L-1 and room temperature. The process of cadmium adsorption by FCPNC was found to follow the Langmuir isotherm model, suggesting that a chemical reaction occurs on the biosorbent surface. Kinetic studies have demonstrated that the cadmium removal process aligns well with the pseudo-second-order model. The thermodynamic analysis revealed the following values: ΔH° = 25.89 kJ mol-1, ΔG° = -21.58 kJ mol-1, and ΔS° = 159.30 J mol-1 K-1. These values indicate that the sorption process is endothermic, spontaneous, and feasible. These findings suggest the potential of FCPNC as an exceptionally effective biosorbent for the removal of water contaminants.

2.
Nanoscale Adv ; 4(24): 5330-5342, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36540120

ABSTRACT

The photocatalytic degradation of uranium complexes is considered among the most efficient techniques for the efficient removal of uranium ions/complexes from radioactive wastewater. Described here is a nanostructured photocatalyst based on a cobalt-doped TiO2 composite with induced oxygen vacancies (Co@TiO2-C) for the photocatalytic removal of uranium complexes from contaminated water. The synergy between oxygen vacancies and Co-doping produced a material with a 1.7 eV bandgap, while the carbon network facilitates electron movement and hinders the e-h recombination. As a result, the new photocatalyst enables the decomposition of uranium-arsenazo iii complexes (U-ARZ3), followed by photocatalytic reduction of hexavalent uranium to insoluble tetravalent uranium. Combined with the nanosheet structure's high surface area, the photocatalytic decomposition, reduction efficiency, and kinetics were significantly enhanced, achieving almost complete U(vi) removal in less than 20 minutes from solution with a concentration as high as 1000 mL g-1. Moreover, the designed photocatalyst exhibits excellent stability and reusability without decreasing the photocatalytic performance after 5 cycles.

3.
Chemosphere ; 304: 135253, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35697101

ABSTRACT

Herein, efficient and potential chelating α-aminophosphonate based sorbents (AP-) derived from three different amine origins (aniline/anthranilic acid/O-phenylenediamine) to form AP-H, carboxylated and aminated enhanced aminophosphonate as AP-H, AP-COOH, and AP-NH2 were synthesized via a facile method. The structure of the synthesized sorbents was elucidated using different techniques; elemental analysis (CHNP/O), FT-IR, NMR (1H-, 13C and 31P NMR), TGA and BET. The fabricated sorbents were exploited for Hg(II) removal from aqueous solution via sorption properties. Isotherm fitted by Langmuir equation: the maximum sorption capacities at optimum pH 5.5, and T:25 ± 1 °C, were found to be 1.33, 1.23, and 1.15 mmol Hg g-1 for AP-COOH, AP-NH2, AP-H, respectively, which is roughly correlated with the active sites density and the hard/soft characteristics of adsorbents' reactive groups. Metal-ligand binding affinities are qualitatively rationalized in terms of hard and soft acids and bases (HSAB) theory. The interaction of Hg(II) (soft) has a stronger affinity to AP-COOH can be considered a softer base compared with reference material (AP-H) over than AP-NH2 (hard). This sequence result showed opposite trends consistent with their reciprocal properties according to the steric effect modulates and the specific surface area. Thermodynamics analysis for absolute values of ΔH°, ΔS° and ΔG° afford the selectivity towards Hg(II) sorption with the following order: AP-COOH > AP-NH2 >AP-H. Elution and regeneration was carried out by HCl solution and recycled for a minimum of five cycles, the sorption and desorption efficiencies are greater than 91%. Such sorbents exhibit good durability, stability and promising potential for Hg(II) removal. Finally, a new modelling technique for quantitative non-linear description and comparison of equivalent geographical positions in 3D space of extended relationships. Exothermic and spontaneous behavior were observed using a proposed Floatotherm that included the Van't Hoff parameters model.


Subject(s)
Mercury , Water Purification , Adsorption , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...