Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Res ; 535: 109008, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103463

ABSTRACT

This work presents the characterization of a novel naturally phosphorylated starch extracted from an unconventional and non-utilized source, the seeds of the stone fruit Syzygium malaccense. The morphology and chemical characteristics of the extracted starch were examined by scanning electron microscopy, FTIR, 1H/13C/31P NMR and 13C-CP/MAS-NMR, HPAEC-PAD chromatography, XRD, DSC, and RVA. The extraction yielded a highly pure starch (95.6 %) with an average granule size of 13 µm. The analysis of the starch components revealed an amylose content of 28.1 % and a predominance (65 %) of B-chains (B1-B3 65 %) in the amylopectin, as shown through HPAEC-PAD chromatography. The X-ray diffractogram was compatible with B-type starch, which was confirmed by the deconvolution of the C1 peak in the 13C-CP/MAS-NMR. X-Ray diffractogram also showed that S. malaccense has 28.5 % of crystallinity. DSC analysis showed values of 82.6 °C and -12.41 J g-1 for Tc and ΔH, respectively, which is compatible with a highly ordered starch granule structure. The values observed for peak (4678 mPa•s), trough (3055 mPa•s), and final viscosity (6526 mPa•s) indicated that S. malaccense may be used as a thickener in hot food.


Subject(s)
Malus , Syzygium , Starch/chemistry , Malaysia , Amylose/analysis , Amylopectin/chemistry , Seeds/chemistry
2.
Food Chem ; 423: 136145, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37187005

ABSTRACT

This work presents a starch extracted from jaboticaba seeds. The extraction yielded 22.65 ± 0.63% of a slightly beige powder (a* 1.92 ± 0.03, b* 10.82 ± 0.17 and L* 92.27 ± 0.24). The starch presented low protein content (1.19% ± 0.11) and phenolic compounds (0.58 ± 0.02 GAE. g) as contaminants. The starch granules showed small, smooth, irregular shapes and sizes between 6.1 and 9.6 µm. The starch presented a high content of amylose (34.50%±0.90) and a predominance of intermediate chain length (B1-chains 51%), followed by A-chains (26%) in the amylopectin. The SEC-MALS-DRI showed the starch had a low molecular weight (5.3·106 g·mol-1) and amylose/amylopectin content compatible with a Cc-type starch, confirmed in the X-ray diffractogram. Thermal studies showed a low onset temperature (T0 = 66.4 ± 0.46 °C) and gelatinization enthalpy (ΔH = 9.1 ± 1.19 J g-1) but a high-temperature range (ΔT = 14.1 ± 0.52 °C). The jaboticaba starch proved to be a promising material for food and non-food applications.


Subject(s)
Amylopectin , Starch , Starch/chemistry , Amylopectin/chemistry , Amylose/chemistry , Seeds/chemistry , Hot Temperature
3.
Foods ; 12(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36766181

ABSTRACT

In this study, the antioxidant, antimicrobial, mechanical, optical, and barrier attributes of Solanum lycocarpum starch bio-based edible films incorporated with a phenolic extract from jaboticaba peel were investigated. Aiming to determine the effect of the polymers and the phenolic extract on the properties of the films, a three-factor simplex-lattice design was employed, and the formulation optimization was based on the produced films' antioxidant potential. The optimized formulation of the starch-PEJP film showed a reddish-pink color with no cracks or bubbles and 91% antioxidant activity against DPPH radical. The optimized starch-PEJP film showed good transparency properties and a potent UV-blocking action, presenting color variation as a function of the pH values. The optimized film was also considerably resistant and highly flexible, showing a water vapor permeability of 3.28 × 10-6 g m-1 h-1 Pa-1. The microbial permeation test and antimicrobial evaluation demonstrated that the optimized starch-PEJP film avoided microbial contamination and was potent in reducing the growth of Escherichia coli, Staphylococcus aureus, and Salmonella spp. In summary, the active starch-PEJP film showed great potential as an environmentally friendly and halochromic material, presenting antioxidant and antimicrobial properties and high UV-protecting activity.

4.
Food Sci Technol Int ; 29(6): 586-597, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35538875

ABSTRACT

In this study functional properties of a galactose-rich heteropolysaccharide (GH) were accessed. The bands of a galactose-rich polysaccharide were found in FTIR spectra, including those from the fingerprint region. GH was characterized as a dark-red material (L* 25.86 ± 0.75, a* 9.46 ± 1.01, b* 0.65 ± 0.14, Chroma 9.48 ± 1.02) with antioxidant activity of 21.5 ± 0.08, 12.1 ± 0.06 and 0.46 ± 0.04 mmol Trolox Eq/mg GH in FRAP, DPPH and ABTS, respectively. GH presented 44.9% of esterification degree and 10.73 ± 0. 01 mg of GAE/g. The production parameters of GH emulsions (GH concentration, time and ultrasound power) were optimized using a 23 Central Composite Rotatable Design (CCRD). Emulsion droplets presented particle size (d µm) varying from 0.823 ± 0.065 to 1.926 ± 0.151, polydispersity index (PDI) from 0.10 ± 0.05 to 0.40 ± 0.01 and zeta potential from -29.25 ± 3.98 to -33.75 ± 1.77. Finally, the high emulsifying activity (EA) (96.67%) and emulsion stability (ES) (97.44%) allow suggesting that GH is a promising polysaccharide for food applications.


Subject(s)
Antioxidants , Galactose , Antioxidants/chemistry , Emulsions/chemistry , Polysaccharides/chemistry , Food , Emulsifying Agents/chemistry
5.
Carbohydr Polym ; 249: 116821, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32933668

ABSTRACT

The objective of this work was to extract, identify and characterize a galactose-rich heteropolysaccharide (GH) from "jaboticaba" peel. The best conditions to extract the GH according to a 23 full-factorial experimental design were 90 °C/30 min/pH 1.0, resulting in a 32.32 % yield using lyophilized sample. The chemical structure analyzed by GC/MS and NMR spectra (HSQC/HSQC-TOCSY) showed that the main chain of GH consists of a (1→4) galactoside branched at carbon 3, containing galactose (67.21 %), glucose (15.78 %), arabinose (9.78 %), rhamnose (2.26 %) and traces of esterified and non-esterified uronic acids. Rheological studies revealed that GH suspensions behave as a Newtonian fluid, with calculated molecular mass of 1.48 × 105 Da. The absolute viscosity of 1 % (w/v) aqueous suspension of GH decreased from 25 mPa s to 10 mPa s in NaCl and 7 mPa s in CaCl2, indicating the polyelectrolyte character of GH.


Subject(s)
Galactose/chemistry , Myrtaceae/chemistry , Plant Extracts/analysis , Plant Extracts/isolation & purification , Polysaccharides/analysis , Polysaccharides/isolation & purification , Molecular Weight , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...