Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Biomolecules ; 14(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38927134

ABSTRACT

A notable shift in understanding the human microbiome's influence on cardiovascular disease (CVD) is underway, although the causal association remains elusive. A systematic review and meta-analysis were conducted to synthesise current knowledge on microbial taxonomy and metabolite variations between healthy controls (HCs) and those with CVD. An extensive search encompassing three databases identified 67 relevant studies (2012-2023) covering CVD pathologies from 4707 reports. Metagenomic and metabolomic data, both qualitative and quantitative, were obtained. Analysis revealed substantial variability in microbial alpha and beta diversities. Moreover, specific changes in bacterial populations were shown, including increased Streptococcus and Proteobacteria and decreased Faecalibacterium in patients with CVD compared with HC. Additionally, elevated trimethylamine N-oxide levels were reported in CVD cases. Biochemical parameter analysis indicated increased fasting glucose and triglycerides and decreased total cholesterol and low- and high-density lipoprotein cholesterol levels in diseased individuals. This study revealed a significant relationship between certain bacterial species and CVD. Additionally, it has become clear that there are substantial inconsistencies in the methodologies employed and the reporting standards adhered to in various studies. Undoubtedly, standardising research methodologies and developing extensive guidelines for microbiome studies are crucial for advancing the field.


Subject(s)
Cardiovascular Diseases , Gastrointestinal Microbiome , Humans , Cardiovascular Diseases/microbiology , Cardiovascular Diseases/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Methylamines/metabolism , Methylamines/blood
2.
J Fungi (Basel) ; 10(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786691

ABSTRACT

Candida auris, a multidrug-resistant yeast, poses significant challenges in healthcare settings worldwide. Understanding its environmental reservoirs is crucial for effective control strategies. This systematic review aimed to review the literature regarding the natural and environmental reservoirs of C. auris. Following the PRISMA guidelines, published studies until October 2023 were searched in three databases: PubMed, Web of Science, and Scopus. Information regarding the origin, sampling procedure, methods for laboratory identification, and antifungal susceptibility was collected and analyzed. Thirty-three studies published between 2016 and 2023 in 15 countries were included and analyzed. C. auris was detected in various environments, including wastewater treatment plants, hospital patient care surfaces, and natural environments such as salt marshes, sand, seawater, estuaries, apples, and dogs. Detection methods varied, with molecular techniques often used alongside culture. Susceptibility profiles revealed resistance patterns. Phylogenetic studies highlight the potential of environmental strains to influence clinical infections. Despite methodological heterogeneity, this review provides valuable information for future research and highlights the need for standardized sampling and detection protocols to mitigate C. auris transmission.

3.
Microorganisms ; 11(7)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37512921

ABSTRACT

Gestational diabetes, affecting about 10% of pregnancies, is characterized by impaired glucose regulation and can lead to complications for health of pregnant women and their offspring. The microbiota, the resident microbes within the body, have been linked to the development of several metabolic conditions. This systematic review with meta-analysis aims to summarize the evidence on the differences in microbiota composition in pregnant women with gestational diabetes and their offspring compared to healthy pregnancies. A thorough search was conducted in the PubMed, Scopus, and Web of Science databases, and data from 21 studies were analyzed utilizing 41 meta-analyses. In the gut microbiota, Bifidobacterium and Alistipes were found to be more abundant in healthy pregnancies, while Roseburia appears to be more abundant in gestational diabetes. The heterogeneity among study findings regarding the microbiota in the meconium is considerable. The placental microbiota exhibited almost no heterogeneity, with an increased abundance of Firmicutes in the gestational diabetes group and a higher abundance of Proteobacteria in the control. The role of the microbiota in gestational diabetes is reinforced by these findings, which additionally point to the potential of microbiome-targeted therapies. To completely comprehend the interactions between gestational diabetes and the microbiome, standardizing methodologies and further research is necessary.

4.
Thyroid ; 33(8): 983-996, 2023 08.
Article in English | MEDLINE | ID: mdl-37140469

ABSTRACT

Background: Low levels of triiodothyronine (T3) are common in patients with heart failure (HF). Our aim was to evaluate the effects of supplementation with low and replacement doses of T3 in an animal model of HF with preserved ejection fraction (HFpEF). Methods: We evaluated four groups: ZSF1 Lean (n = 8, Lean-Ctrl), ZSF1 Obese (rat model of metabolic-induced HFpEF, n = 13, HFpEF), ZSF1 Obese treated with a replacement dose of T3 (n = 8, HFpEF-T3high), and ZSF1 Obese treated with a low-dose of T3 (n = 8, HFpEF-T3low). T3 was administered in drinking water from weeks 13 to 24. The animals underwent anthropometric and metabolic assessments, echocardiography, and peak effort testing with maximum O2 consumption (VO2max) determination at 22 weeks, and a terminal hemodynamic evaluation at 24 weeks. Afterwhile myocardial samples were collected for single cardiomyocyte evaluation and molecular studies. Results: HFpEF animals showed lower serum and myocardial thyroid hormone levels than Lean-Ctrl. Treatment with T3 did not normalize serum T3 levels, but increased myocardial T3 levels to normal levels in the HFpEF-T3high group. Body weight was significantly decreased in both the T3-treated groups, comparing with HFpEF. An improvement in glucose metabolism was observed only in HFpEF-T3high. Both the treated groups had improved diastolic and systolic function in vivo, as well as improved Ca2+ transients and sarcomere shortening and relaxation in vitro. Comparing with HFpEF animals, HFpEF-T3high had increased heart rate and a higher rate of premature ventricular contractions. Animals treated with T3 had higher myocardial expression of calcium transporter ryanodine receptor 2 (RYR2) and α-myosin heavy chain (MHC), with a lower expression of ß-MHC. VO2max was not influenced by treatment with T3. Myocardial fibrosis was reduced in both the treated groups. Three animals died in the HFpEF-T3high group. Conclusions: Treatment with T3 was shown to improve metabolic profile, myocardial calcium handling, and cardiac function. While the low dose was well-tolerated and safe, the replacement dose was associated with increased heart rate, and increased risk of arrhythmias and sudden death. Modulation of thyroid hormones may be a potential therapeutic target in HFpEF; however, it is important to take into account the narrow therapeutic window of T3 in this condition.


Subject(s)
Heart Failure , Rats , Animals , Heart Failure/drug therapy , Stroke Volume , Triiodothyronine/pharmacology , Triiodothyronine/therapeutic use , Calcium/metabolism , Disease Models, Animal , Obesity/complications
5.
Cancers (Basel) ; 15(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36900215

ABSTRACT

Prostate cancer (PCa) is the most common malignant neoplasm with the highest worldwide incidence in men aged 50 years and older. Emerging evidence suggests that the microbial dysbiosis may promote chronic inflammation linked to the development of PCa. Therefore, this study aims to compare the microbiota composition and diversity in urine, glans swabs, and prostate biopsies between men with PCa and non-PCa men. Microbial communities profiling was assessed through 16S rRNA sequencing. The results indicated that α-diversity (number and abundance of genera) was lower in prostate and glans, and higher in urine from patients with PCa, compared to non-PCa patients. The different genera of the bacterial community found in urine was significantly different in PCa patients compared to non-PCa patients, but they did not differ in glans and prostate. Moreover, comparing the bacterial communities present in the three different samples, urine and glans show a similar genus composition. Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed significantly higher levels of the genera Streptococcus, Prevotella, Peptoniphilus, Negativicoccus, Actinomyces, Propionimicrobium, and Facklamia in urine of PCa patients, whereas Methylobacterium/Methylorubrum, Faecalibacterium, and Blautia were more abundant in the non-PCa patients. In glans, the genus Stenotrophomonas was enriched in PCa subjects, while Peptococcus was more abundant in non-PCa subjects. In prostate, Alishewanella, Paracoccus, Klebsiella, and Rothia were the overrepresented genera in the PCa group, while Actinomyces, Parabacteroides, Muribaculaceae sp., and Prevotella were overrepresented in the non-PCa group. These findings provide a strong background for the development of potential biomarkers with clinical interest.

6.
J Fungi (Basel) ; 9(1)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36675901

ABSTRACT

Candida parapsilosis is the second most common Candida species isolated in Asia, Southern Europe, and Latin America and is often involved in invasive infections that seriously impact human health. This pathogen is part of the psilosis complex, which also includes Candida orthopsilosis and Candida metapsilosis. C. parapsilosis infections are particularly prevalent among neonates with low birth weights, individuals who are immunocompromised, and patients who require prolonged use of a central venous catheter or other indwelling devices, whose surfaces C. parapsilosis exhibits an enhanced capacity to adhere to and form biofilms. Despite this well-acknowledged prevalence, the biology of C. parapsilosis has not been as extensively explored as that of Candida albicans. In this paper, we describe the molecular mechanistic pathways of virulence in C. parapsilosis and show how they differ from those of C. albicans. We also describe the mode of action of antifungal drugs used for the treatment of Candida infections, namely, polyenes, echinocandins, and azoles, as well as the resistance mechanisms developed by C. parapsilosis to overcome them. Finally, we stress the importance of the ongoing search for species-specific features that may aid the development of effective control strategies and thus reduce the burden on patients and healthcare costs.

7.
Commun Biol ; 5(1): 1118, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271293

ABSTRACT

The increasing prevalence of candidosis caused by Candida glabrata is related to its ability to acquire azole resistance. Although azole resistance mechanisms are well known, the mechanisms for azole import into fungal cells have remained obscure. In this work, we have characterized two hexose transporters in C. glabrata and further investigate their role as potential azole importers. Three azole susceptible C. glabrata clinical isolates were evolved towards azole resistance and the acquired resistance phenotype was found to be independent of CgPDR1 or CgERG11 mutations. Through whole-genome sequencing, CgHXT4/6/7 was found to be mutated in the three evolved strains, when compared to their susceptible parents. CgHxt4/6/7 and the 96% identical CgHxt6/7 were found to confer azole susceptibility and increase azole accumulation in C. glabrata cells, strikingly rescuing the susceptibility phenotype imposed by CgPDR1 deletion, while the identified loss-of-function mutation in CgHXT4/6/7, leads to increased azole resistance. In silico docking analysis shows that azoles display a strong predicted affinity for the glucose binding site of CgHxt4/6/7. Altogether, we hypothesize that hexose transporters, such as CgHxt4/6/7 and CgHxt6/7, may constitute a family of azole importers, involved in clinical drug resistance in fungal pathogens, and constituting promising targets for improved antifungal therapy.


Subject(s)
Azoles , Candida glabrata , Candida glabrata/genetics , Azoles/pharmacology , Azoles/therapeutic use , Drug Resistance, Fungal/genetics , Antifungal Agents/pharmacology , Glucose , Evolution, Molecular , Hexoses
8.
Clin Microbiol Infect ; 28(12): 1655.e5-1655.e8, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36028086

ABSTRACT

OBJECTIVES: Hereby, we describe the molecular mechanisms underlying the acquisition of azole resistance by a Candida parapsilosis isolate following fluconazole treatment due to candiduria. METHODS: A set of three consecutive C. parapsilosis isolates were recovered from the urine samples of a patient with candiduria. Whole-genome sequencing and antifungal susceptibility assays were performed. The expression of MRR1, MDR1, ERG11 and CDR1B (CPAR2_304370) was quantified by RT-qPCR. RESULTS: The initial isolate CPS-A was susceptible to all three azoles tested (fluconazole, voriconazole and posaconazole); isolate CPS-B, collected after the second cycle of treatment, exhibited a susceptible-dose-dependent phenotype to fluconazole and isolate CPS-C, recovered after the third cycle, exhibited a cross-resistance profile to fluconazole and voriconazole. Whole-genome sequencing revealed a putative resistance mechanism in isolate CPS-C, associated with a G1810A nucleotide substitution, leading to a G604R change in the Mrr1p transcription factor. Introducing this mutation into the susceptible CPS-A isolate (MRR1RI) resulted in resistance to fluconazole and voriconazole, as well as up-regulation of MRR1 and MDR1. Interestingly, the susceptible-dose-dependent phenotype exhibited by isolate CPS-B was associated with an increased copy number of the CDR1B gene. The expression of CDR1B was increased in both isolates CPS-B and CPS-C and in the MRR1RI strain, harbouring the gain-of-function mutation. CONCLUSIONS: Our results describe clinical azole cross-resistance acquisition in C. parapsilosis due to a G1810A (G604R) gain-of-function mutation, resulting in MRR1 hyperactivation and consequently, MDR1 efflux pump overexpression. We also associated amplification of the CDR1B gene with decreased fluconazole susceptibility and showed that it is a putative target of the MRR1 gain-of-function mutation.


Subject(s)
Candida parapsilosis , Candidiasis , Candida parapsilosis/genetics , Azoles/pharmacology , Azoles/therapeutic use , Fluconazole/pharmacology , Fluconazole/therapeutic use , Voriconazole/pharmacology , Voriconazole/therapeutic use , Drug Resistance, Fungal/genetics , Gain of Function Mutation , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candidiasis/drug therapy , Fungal Proteins/genetics , Fungal Proteins/metabolism , Mutation
9.
Eur Heart J Cardiovasc Imaging ; 23(9): 1248-1259, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35640278

ABSTRACT

AIMS: Epicardial adipose tissue (EAT) volume and attenuation on computed tomography (CT) have been associated with atrial fibrillation. Beyond these conventional CT measures, radiomics allows extraction of high-dimensional data and deep quantitative adipose tissue phenotyping, which may capture its underlying biology. We aimed to explore the EAT proteomic and CT-radiomic signatures associated with impaired left atrial (LA) remodelling and post-operative atrial fibrillation (POAF). METHODS AND RESULTS: We prospectively included 132 patients with severe aortic stenosis with no prior atrial fibrillation referred for aortic valve replacement. Pre-operative non-contrast CT images were obtained for extraction of EAT volume and other radiomic features describing EAT texture. The LA function was assessed by 2D-speckle-tracking echocardiography peak atrial longitudinal strain and peak atrial contraction strain. The EAT biopsies were performed during surgery for proteomic analysis by sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS). The POAF incidence was monitored from surgery until discharge. Impaired LA function and incident POAF were associated with EAT up-regulation of inflammatory and thrombotic proteins, and down-regulation of cardioprotective proteins with anti-inflammatory and anti-lipotoxic properties. The EAT volume was independently associated with LA enlargement, impaired function, and POAF risk. On CT images, EAT texture of patients with POAF was heterogeneous and exhibited higher maximum grey-level values than sinus rhythm patients, which correlated with up-regulation of inflammatory and down-regulation of lipid droplet-formation EAT proteins. The CT radiomics of EAT provided an area under the curve of 0.80 (95% confidence interval: 0.68-0.92) for discrimination between patients with POAF and sinus rhythm. CONCLUSION: Pre-operative CT-radiomic profile of EAT detected adverse EAT proteomics and identified patients at risk of developing POAF.


Subject(s)
Aortic Valve Stenosis , Atrial Fibrillation , Atrial Remodeling , Adipose Tissue/diagnostic imaging , Adipose Tissue/metabolism , Aortic Valve Stenosis/complications , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/epidemiology , Atrial Fibrillation/surgery , Humans , Phenotype , Proteomics
10.
Diagnostics (Basel) ; 11(8)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34441356

ABSTRACT

AIMS: This study aimed to evaluate the association of GDF-15 and NT-pro-BNP in two different biological matrices with AF in severe aortic stenosis patients undergoing aortic valve replacement surgery (AVR), its association with atrial matrix remodeling, as well as with 30-day postoperative outcomes. MAIN METHODS: One hundred and twenty-six patients between 2009 and 2019 with severe aortic stenosis undergoing AVR surgery in a tertiary hospital were assessed. KEY FINDINGS: pericardial fluid GDF-15 and pericardial fluid and serum NT-pro-BNP were increased in AF patients with aortic stenosis. COL1A1 and COL3A1 gene expression increased when pericardial fluid NT-pro-BNP values were higher. TIMP4 was positively correlated with pericardial fluid GDF-15. SIGNIFICANCE: GDF-15 and NT-pro-BNP in the pericardial fluid are biomarkers of atrial fibrillation in aortic stenosis and correlate with atrial matrix remodeling. AKI is predicted by both serum and pericardial fluid GDF-15.

11.
Virulence ; 12(1): 601-614, 2021 12.
Article in English | MEDLINE | ID: mdl-33538224

ABSTRACT

Candida parapsilosis is an emergent opportunistic yeast among hospital settings that affects mainly neonates and immunocompromised patients. Its most remarkable virulence traits are the ability to adhere to prosthetic materials, as well as the formation of biofilm on abiotic surfaces. The Ndt80 transcription factor was identified as one of the regulators of biofilm formation by C. parapsilosis; however, its function in this process was not yet clarified. By knocking out NDT80 (CPAR2-213640) gene, or even just one single copy of the gene, we observed substantial alterations of virulence attributes, including morphogenetic changes, adhesion and biofilm growth profiles. Both ndt80Δ and ndt80ΔΔ mutants changed colony and cell morphologies from smooth, yeast-shaped to crepe and pseudohyphal elongated forms, exhibiting promoted adherence to polystyrene microspheres and notably, forming a higher amount of biofilm compared to wild-type strain. Interestingly, we identified transcription factors Ume6, Cph2, Cwh41, Ace2, Bcr1, protein kinase Mkc1 and adhesin Als7 to be under Ndt80 negative regulation, partially explaining the phenotypes displayed by the ndt80ΔΔ mutant. Furthermore, ndt80ΔΔ pseudohyphae adhered more rapidly and were more resistant to murine macrophage attack, becoming deleterious to such cells after phagocytosis. Unexpectedly, our findings provide the first evidence for a direct role of Ndt80 as a repressor of C. parapsilosis virulence attributes. This finding shows that C. parapsilosis Ndt80 functionally diverges from its homolog in the close related fungal pathogen C. albicans.


Subject(s)
Biofilms/growth & development , Candida parapsilosis/genetics , Candida parapsilosis/pathogenicity , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Phenotype , Transcription Factors/genetics , Animals , Candidiasis/microbiology , Humans , Macrophages/microbiology , Mice , Phagocytosis , RAW 264.7 Cells
12.
Rev Port Cardiol (Engl Ed) ; 39(11): 625-633, 2020 Nov.
Article in English, Portuguese | MEDLINE | ID: mdl-33168363

ABSTRACT

INTRODUCTION: Accumulation of epicardial adipose tissue (EAT) is associated with coronary artery disease (CAD) and increased risk of coronary events in asymptomatic subjects and low-risk patients, suggesting that EAT promotes atherosclerosis in its early stage. Recent studies have shown that the presence of CAD affects the properties of adjacent EAT, leading to dynamic changes in the molecular players involved in the interplay between EAT and the coronary arteries over the history of the disease. The role of EAT in late-stage CAD has not been investigated. OBJECTIVES: In a comparative analysis with mediastinal and subcutaneous adipose tissue, we aim to investigate whether the volume of EAT assessed by computed tomography and its proteome assessed by SWATH-MS mass spectrometry are associated with late stages of CAD in an elderly cohort of severe aortic stenosis patients. METHODS: The EPICHEART study (NCT03280433) is a prospective study enrolling patients with severe degenerative aortic stenosis referred for elective aortic valve replacement, whose protocol includes preoperative clinical, nutritional, echocardiographic, cardiac computed tomography and invasive coronary angiographic assessments. During cardiac surgery, samples of EAT and mediastinal and subcutaneous thoracic adipose tissue are collected for proteomics analysis by SWATH-MS. In addition, pericardial fluid and peripheral and coronary sinus blood samples are collected to identify circulating and local adipose tissue-derived biomarkers of CAD. CONCLUSION: We designed a translational study to explore the association of EAT quantity and quality with advanced CAD. We expect to identify new biochemical factors and biomarkers in the crosstalk between EAT and the coronary arteries that are involved in the pathogenesis of late coronary atherosclerosis, especially coronary calcification, which might be translated into new therapeutic targets and imaging tools by biomedical engineering.


Subject(s)
Coronary Artery Disease , Adipose Tissue , Aged , Coronary Artery Disease/diagnostic imaging , Humans , Pericardium/diagnostic imaging , Prospective Studies , Proteomics
13.
Article in English | MEDLINE | ID: mdl-31932372

ABSTRACT

Five Candida krusei isolates (susceptible and resistant) recovered from the urine of a kidney transplant patient treated with voriconazole (VRC) 200 mg twice daily for 20 days were studied. Eight unrelated clinical isolates of C. krusei were exposed in vitro to VRC 0.001 µg/ml for 30 days. Development of VRC transient resistance occurred in vivo, and induction of permanent resistance occurred in vitro Mostly, ABC1 and ERG11 genes were overexpressed, and a homozygous T418C mutation in the ERG11 gene was found.


Subject(s)
Adaptation, Physiological/drug effects , Antifungal Agents/pharmacology , Drug Resistance, Fungal/genetics , Mycoses/drug therapy , Pichia/drug effects , Voriconazole/pharmacology , ATP-Binding Cassette Transporters/genetics , Cytochrome P-450 Enzyme System/genetics , Female , Humans , Kidney Transplantation/adverse effects , Microbial Sensitivity Tests , Mycoses/microbiology , Pichia/genetics , Pichia/isolation & purification , Young Adult
14.
Atherosclerosis ; 292: 75-83, 2020 01.
Article in English | MEDLINE | ID: mdl-31783201

ABSTRACT

BACKGROUND & AIMS: The role of epicardial adipose tissue (EAT) in the pathophysiology of late stage-coronary artery disease (CAD) has not been investigated. We explored the association of EAT volume and its proteome with advanced coronary atherosclerosis. METHODS: The EPICHEART Study prospectively enrolled 574 severe aortic stenosis patients referred to cardiac surgery. Before surgery, EAT volume was quantified by computed tomography (CT). During surgery, epicardial, mediastinal (MAT) and subcutaneous (SAT) adipose tissue samples were collected to explore fat phenotype by analyzing the proteomic profile using SWATH-mass spectrometry; pericardial fluid and peripheral venous blood were also collected. CAD presence was defined as coronary artery stenosis ≥50% in invasive angiography and by CT-derived Agatston coronary calcium score (CCS). RESULTS: EAT volume adjusted for body fat was associated with higher CCS, but not with the presence of coronary stenosis. In comparison with mediastinal and subcutaneous fat depots, EAT exhibited a pro-calcifying proteomic profile in patients with CAD characterized by upregulation of annexin-A2 and downregulation of fetuin-A; annexin-A2 protein levels in EAT samples were also positively correlated with CCS. We confirmed that the annexin-A2 gene was overexpressed in EAT samples of CAD patients and positively correlated with CCS. Fetuin-A gene was not detected in EAT samples, but systemic fetuin-A was higher in CAD than in non-CAD patients, suggesting that fetuin-A was locally downregulated. CONCLUSIONS: In an elderly cohort of stable patients, CCS was associated with EAT volume and annexin-A2/fetuin-A signaling, suggesting that EAT might orchestrate pro-calcifying conditions in the late phases of CAD.


Subject(s)
Adipose Tissue/anatomy & histology , Adipose Tissue/diagnostic imaging , Annexin A2/analysis , Annexin A2/physiology , Coronary Artery Disease/diagnostic imaging , Pericardium/anatomy & histology , Pericardium/diagnostic imaging , Signal Transduction , Tomography, X-Ray Computed , Vascular Calcification/diagnostic imaging , alpha-2-HS-Glycoprotein/analysis , alpha-2-HS-Glycoprotein/physiology , Adipose Tissue/chemistry , Aged , Aged, 80 and over , Biomarkers/analysis , Coronary Artery Disease/blood , Coronary Artery Disease/etiology , Female , Humans , Male , Organ Size , Pericardium/chemistry , Prospective Studies , Proteomics , Severity of Illness Index , Vascular Calcification/blood , Vascular Calcification/etiology
15.
Mycoses ; 62(12): 1194-1201, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31556177

ABSTRACT

BACKGROUND: Biofilm formation represents a major microbial virulence attribute especially at epithelial surfaces such as the skin. Malassezia biofilm formation at the skin surface has not yet been addressed. OBJECTIVE: The present study aimed to evaluate Malassezia colonisation pattern on a reconstructed human epidermis (RhE) by imaging techniques. METHODS: Malassezia clinical isolates were previously isolated from volunteers with pityriasis versicolor and seborrhoeic dermatitis. Yeast of two strains of M furfur and M sympodialis were inoculated onto the SkinEthic™ RHE. The tissues were processed for light microscopy, wide-field fluorescence microscopy and scanning electron microscopy. RESULTS: Colonisation of the RhE surface with aggregates of Malassezia yeast entrapped in a multilayer sheet with variable amount of extracellular matrix was unveiled by imaging techniques following 24, 48, 72 and 96 hours of incubation. Whenever yeast were suspended in RPMI medium supplemented with lipids, the biofilm substantially increased with a dense extracellular matrix in which the yeast cells were embedded. Slight differences were found in the biofilm architectural structure between the two tested species with an apparently higher entrapment and viscosity in M furfur biofilm. CONCLUSION: Skin isolates of M furfur and M sympodialis were capable of forming biofilm in vitro at the epidermal surface simulating in vivo conditions. Following 24 hours of incubation, without added lipids, rudimental matrix was barely visible, conversely to the reported at plastic surfaces. The amount of biofilm apparently increased progressively from 48 to 96 hours. A structural heterogeneity of biofilm between species was found.


Subject(s)
Biofilms , Epidermis/microbiology , Image Processing, Computer-Assisted , Malassezia/isolation & purification , Skin, Artificial/microbiology , Dermatitis, Seborrheic/microbiology , Humans , Malassezia/ultrastructure , Microscopy, Electron, Scanning , Tinea Versicolor/microbiology
16.
Microbiol Resour Announc ; 8(35)2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31467089

ABSTRACT

Here, we report the draft genome sequences of three Candida glabrata clinical isolates, 040, 044, and OL152. The isolates were recovered from patients admitted to Centro Hospitalar de S. João (CHSJ) in Porto, Portugal. Isolates 040 and 044 were taken from blood samples, while isolate OL152 was collected from urine.

17.
Braz J Microbiol ; 50(1): 165-173, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30637632

ABSTRACT

One of teachers' concerns, with students in general and medical students in particular, is to ensure as much as possible that information goes from students' short-term memories to their long-term memories. The present study focuses on knowledge retention in Medical Microbiology and assesses the effectiveness of some strategies implemented for short- and long-term retention. A pre- and post-test was used to assess student's learning. This study involved students of Porto University (test group). Test group participants were all attending the third year of the Medicine Degree Program. The results of post-test 1 were considered very positive and support the importance of these applied active activities and/or methodologies in Medical Microbiology for short-term retention. However, the results obtained in post-test 2 showed that knowledge retention after 9 months, despite substantial, decreases.


Subject(s)
Education, Medical , Microbiology/education , Adult , Female , Humans , Male , Students, Medical/statistics & numerical data , Young Adult
18.
Article in English | MEDLINE | ID: mdl-30348666

ABSTRACT

Candida glabrata is an emerging fungal pathogen. Its increased prevalence is associated with its ability to rapidly develop antifungal drug resistance, particularly to azoles. In order to unravel new molecular mechanisms behind azole resistance, a transcriptomics analysis of the evolution of a C. glabrata clinical isolate (isolate 044) from azole susceptibility to posaconazole resistance (21st day), clotrimazole resistance (31st day), and fluconazole and voriconazole resistance (45th day), induced by longstanding incubation with fluconazole, was carried out. All the evolved strains were found to accumulate lower concentrations of azole drugs than the parental strain, while the ergosterol concentration remained mostly constant. However, only the population displaying resistance to all azoles was found to have a gain-of-function mutation in the C. glabrataPDR1 gene, leading to the upregulation of genes encoding multidrug resistance transporters. Intermediate strains, exhibiting posaconazole/clotrimazole resistance and increased fluconazole/voriconazole MIC levels, were found to display alternative ways to resist azole drugs. Particularly, posaconazole/clotrimazole resistance after 31 days was correlated with increased expression of adhesin genes. This finding led us to identify the Epa3 adhesin as a new determinant of azole resistance. Besides being required for biofilm formation, Epa3 expression was found to decrease the intracellular accumulation of azole antifungal drugs. Altogether, this work provides a glimpse of the transcriptomics evolution of a C. glabrata population toward multiazole resistance, highlighting the multifactorial nature of the acquisition of azole resistance and pointing out a new player in azole resistance.


Subject(s)
Antifungal Agents/pharmacology , Azoles/pharmacology , Candida glabrata/drug effects , Candida glabrata/genetics , Drug Resistance, Fungal/genetics , Candida glabrata/isolation & purification , Clotrimazole/pharmacology , Ergosterol/metabolism , Fluconazole/pharmacology , Gene Expression Regulation, Fungal/drug effects , Humans , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Transcription Factors/genetics , Transcriptome/genetics , Triazoles/pharmacology , Voriconazole/pharmacology
19.
Front Microbiol ; 8: 498, 2017.
Article in English | MEDLINE | ID: mdl-28424663

ABSTRACT

Endodontic biofilms eradication from the infected root canal system remains as the primary focus in endodontic field. In this study, it was assessed the efficacy of antimicrobial Photodynamic Therapy (aPDT) with the Zn(II)chlorin e6 methyl ester (Zn(II)e6Me) activated by red light against monospecies and mixed biofilms of Enterococcus faecalis and Candida albicans. The results were compared with the ones obtained with Rose Bengal (RB), Toluidine Blue-O (TBO), the synthetic tetracationic porphyrin (TMPyP) as well as classical endodontic irrigants (3% NaOCl, 17% EDTA and 2% CHX). The antimicrobial efficacy of aPDT toward monospecies and mixed biofilms was quantified resorting to safranin red method. The changes of biofilm organization and of cellular ultrastructure were evaluated through several microscopy techniques (light, laser confocal and transmission electron microscopy). Zn(II)e6Me once activated with light for 60 or 90 s was able to remove around 60% of the biofilm's biomass. It was more efficient than TBO and RB and showed similar efficiency to TMPyP and classical irrigants, CHX and EDTA. As desirable in a PS, Zn(II)e6Me in the dark showed smaller activity than TMPyP. Only NaOCl revealed higher efficiency, with 70-90% of the biofilm's biomass removal. The organization of biofilms and the normal microbial cell ultrastructure were extensively damaged by the presence of Zn(II)e6Me. aPDT with Zn(II)e6Me showed to be an efficient antimicrobial strategy deserving further studies leading to a future clinical usage in endodontic disinfection.

20.
Oncotarget ; 7(39): 62862-62872, 2016 Sep 27.
Article in English | MEDLINE | ID: mdl-27590517

ABSTRACT

Opportunistic gut infections and chronic inflammation, in particular due to overgrowth of Candida albicans present in the gut microbiota, are increasingly reported in the elder population. In aged, adult and young mice, we now compared the relative intestinal over-colonization by ingested C. albicans and their translocation to other organs, focusing on the role of adenosine A2A receptors that are a main stop signal of inflammation. We report that elderly mice are more prone to over-colonization by C. albicans than adult and young mice. This fungal over-growth seems to be related with higher growth rate in intestinal lumen, independent of gut tissues invasion, but resulting in higher GI tract inflammation. We observed a particularly high colonization of the stomach, with increased rate of yeast-to-hypha transition in aged mice. We found a correlation between A2A receptor density and tissue damage due to yeast infection: comparing with young and adults, aged mice have a lower gut A2A receptor density and C. albicans infection failed to increase it. In conclusion, this study shows that aged mice have a lower ability to cope with inflammation due to C. albicans over-colonization, associated with an inability to adaptively adjust adenosine A2A receptors density.


Subject(s)
Aging , Candida albicans , Candidiasis/genetics , Receptor, Adenosine A2A/genetics , Animals , Candidiasis/metabolism , Feces , Gastrointestinal Tract/microbiology , Inflammation , Male , Mice , Mice, Inbred C57BL , Stomach/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...