Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters










Publication year range
1.
Medicina (Kaunas) ; 60(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38929479

ABSTRACT

Background and Objectives: Non-alcoholic fatty liver disease (NAFLD) is associated with obesity and ranges from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. Accumulating evidence in animal models suggests that loss of interleukin-10 (IL-10) anti-inflammatory actions might contribute to lobular inflammation, considered one of the first steps toward NASH development. However, the role of IL-10 in lobular inflammation remains poorly explored in humans. We examined mRNA and protein levels of IL-10 in liver biopsies and serum samples from morbidly obese patients, investigating the relationship between IL-10 and lobular inflammation degree. Materials and Methods: We prospectively enrolled morbidly obese patients of both sexes, assessing the lobular inflammation grade by the Brunt scoring system to categorize participants into mild (n = 7), moderate (n = 19), or severe (n = 13) lobular inflammation groups. We quantified the hepatic mRNA expression of IL-10 by quantitative polymerase chain reaction and protein IL-10 levels in liver and serum samples by Luminex Assay. We estimated statistical differences by one-way analysis of variance (ANOVA) and Tukey's multiple comparison test. Results: The hepatic expression of IL-10 significantly diminished in patients with severe lobular inflammation compared with the moderate lobular inflammation group (p = 0.01). The hepatic IL-10 protein levels decreased in patients with moderate or severe lobular inflammation compared with the mild lobular inflammation group (p = 0.008 and p = 0.0008, respectively). In circulation, IL-10 also significantly decreased in subjects with moderate or severe lobular inflammation compared with the mild lobular inflammation group (p = 0.005 and p < 0.0001, respectively). Conclusions: In liver biopsies and serum samples of morbidly obese patients, the protein levels of IL-10 progressively decrease as lobular inflammation increases, supporting the hypothesis that lobular inflammation develops because of the loss of the IL-10-mediated anti-inflammatory counterbalance.


Subject(s)
Inflammation , Interleukin-10 , Liver , Obesity, Morbid , Humans , Interleukin-10/blood , Interleukin-10/analysis , Obesity, Morbid/complications , Obesity, Morbid/blood , Female , Male , Adult , Middle Aged , Liver/metabolism , Liver/pathology , Prospective Studies , Inflammation/blood , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/complications
2.
Phys Rev E ; 109(1-2): 015104, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38366430

ABSTRACT

The lifting Hele-Shaw cell flow commonly involves the stretching of a viscous oil droplet surrounded by air, in the confined space between two parallel plates. As the upper plate is lifted, viscous fingering instabilities emerge at the air-oil interface. Such an interfacial instability phenomenon is widely observed in numerous technological and industrial applications, being quite difficult to control. Motivated by the recent interest in controlling and stabilizing the Saffman-Taylor instability in lifting Hele-Shaw flows, we propose an alternative way to restrain the development of interfacial disturbances in this gap-variable system. Our method modifies the traditional plate-lifting flow arrangement by introducing a finite fluid annulus layer encircling the central oil droplet, and separating it from the air. A second-order, perturbative mode-coupling approach is employed to analyze morphological and stability behaviors in this three-fluid, two-interface, doubly connected system. Our findings indicate that the intermediate fluid ring can significantly stabilize the interface of the central oil droplet. We show that the effectiveness of this stabilization protocol relies on the appropriate choice of the ring's viscosity and thickness. Furthermore, we calculate the adhesion force required to detach the plates, and find that it does not change significantly with the addition of the fluid envelope as long as it is sufficiently thin. Finally, we detect no distinction in the adhesion force computed for stable or unstable annular interfaces, indicating that the presence of fingering at the ring's boundaries has a negligible effect on the adhesion force.

3.
Phys Rev E ; 108(2-2): 025104, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37723719

ABSTRACT

The lifting Hele-Shaw cell setup is a popular modification of the classic, fixed-gap, radial viscous fingering problem. In the lifting cell configuration, the upper cell plate is lifted such that a more viscous inner fluid is invaded by an inward-moving outer fluid. As the fluid-fluid interface contracts, one observes the rising of distinctive patterns in which penetrating fingers having rounded tips compete among themselves, reaching different lengths. Despite the scholarly and practical relevance of this confined lifting flow problem, the impact of interfacial rheology effects on its pattern-forming dynamics has been overlooked. Authors of recent studies on the traditional injection-induced radial Hele-Shaw flow and its centrifugally driven variant have shown that, if the fluid-fluid interface is structured (i.e., laden with surfactants, particles, proteins, or other surface-active entities), surface rheological stresses start to act, influencing the development of the viscous fingering patterns. In this paper, we investigate how interfacial rheology affects the stability as well as the shape of the emerging fingered structures in lifting Hele-Shaw flows, at linear and early nonlinear dynamic stages. We tackle the problem by utilizing the Boussinesq-Scriven model to describe the interface and by employing a perturbative mode-coupling scheme. Our linear stability results show that interfacial rheology effects destabilize the interface. Furthermore, our second-order findings indicate that interfacial rheology significantly alters intrinsically nonlinear morphological features of the shrinking interface, inducing the formation of narrow sharp-tip penetrating fingers and favoring enhanced competition among them.

4.
Phys Rev E ; 107(2-2): 025105, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36932566

ABSTRACT

In rotating Hele-Shaw flows, centrifugal force acts, and the interface separating two viscous fluids becomes unstable, driven by the density difference between them. Complex interfacial structures develop where fingers of various shapes and sizes grow, and compete. These patterns have been well studied over the last few decades, analytically, numerically, and experimentally. However, one feature of the pattern-forming dynamics of much current interest has been underappreciated: the role of surface rheological stresses in the deformation, and time evolution of the fluid-fluid interface. In this paper, we employ a perturbative, second-order mode-coupling analysis to investigate how interfacial rheology effects influence centrifugally driven fingering phenomena, beyond the scope of linear stability theory. Describing the viscous Newtonian interface by using a Boussinesq-Scriven model, we derive a nonlinear differential equation that governs the early linear, and nonlinear time evolution of the system. In this framing, the most prevalent dynamical features of the patterns are described in terms of two dimensionless parameters: the viscosity contrast A (dimensionless viscosity difference between the fluids), and the Boussinesq number Bq which involves a ratio between interfacial and bulk viscosities. At the linear level, our results show that for a given A, surface rheological stresses dictated by Bq have a stabilizing role. Nevertheless, our weakly nonlinear findings reveal a more elaborate scenario in which the shape of the fingers, and their finger competition behavior result from the coupled influence of A and Bq. It is found that, although finger competition phenomena depend on the specific values of A and Bq, the fingers tend to widen as Bq is increased, regardless of the value of A.

5.
Phys Rev E ; 107(1-2): 015103, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36797856

ABSTRACT

Fluid-fluid interfaces, laden with polymers, surfactants, lipid bilayers, proteins, solid particles, or other surface-active agents, often exhibit a rheologically complex response to deformations. Despite its academic and practical relevance to fluid dynamics and various other fields of research, the role of interfacial rheology in viscous fingering remains fairly underexplored. A noteworthy exception is the work by Li and Manikantan [Phys. Rev. Fluids 6, 074001 (2021)2469-990X10.1103/PhysRevFluids.6.074001], who used linear stability analysis to show that surface rheological stresses act to stabilize the development of radial viscous fingering at the linear regime. In this paper, we perform a perturbative, second-order mode-coupling analysis of the system and investigate the influence of interfacial rheology on the morphology of the fingering structures at early nonlinear stages of the dynamics. In particular, we focus on understanding how interfacial rheology impacts the emblematic finger tip-widening and finger tip-splitting phenomena that take place in radial viscous fingering in Hele-Shaw cells. We describe the viscous Newtonian fluid-fluid interface by using a Boussinesq-Scriven model, and derive a generalized Young-Laplace pressure jump condition at the fluid-fluid interface. In this framing, we go beyond the purely linear description and use Darcy's law to obtain a perturbative mode-coupling differential equation which describes the time evolution of the perturbation amplitudes, accurate to second order. Our early nonlinear mode-coupling results indicate that regardless of their stabilizing action at the linear regime, interfacial rheology effects favor finger tip widening, leading to the occurrence of enhanced finger tip-splitting events.

6.
Phys Rev E ; 106(2-2): 025105, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36109920

ABSTRACT

We investigate the behavior of a magnetorheological (MR) fluid annulus, bounded by a nonmagnetic fluid and confined in a Hele-Shaw cell, under the simultaneous effect of in-plane, external radial and azimuthal magnetic fields. A second-order mode-coupling theory is used to study the early nonlinear stage of the pattern-forming dynamics. We examine changes in the morphology of the MR fluid annular structure as a function of its magnetic-field-tunable rheological properties, as well as the combined magnetic field's intensities, and thickness of the ring. Our weakly nonlinear perturbative results show that, depending on the system control parameters, the MR fluid annulus adopts various stationary shapes. These equilibrium annular structures present slightly bent, asymmetric fingered protrusions which may emerge on the inner, outer, or even on both boundaries of the magnetic fluid ring. On top of these morphological changes, we find that the resulting permanent shape patterns rotate with a well defined angular velocity. We focus on analyzing how the overall shape of the fingered patterns, in particular their sharpness and asymmetric form, as well as the number of resulting fingers are impacted by the magnetic-field-dependent yield stress of the MR fluid annulus. The influence of the magnetically controlled rheological properties of the MR fluid on the angular velocity of the rotating annulus is also scrutinized.

7.
J Clin Virol Plus ; 2(4): 100104, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36034515

ABSTRACT

The SARS CoV-2 D614G variant circulated in Cuba in 2020. New viral variants were detected after the opening of the border in November 2020. We show the results of the genomic surveillance in Cuba from December 28, 2020, to September 28, 2021 and their relationship to the epidemiological situation in the country. A total of 1,406 nasopharyngeal exudates from COVID-19 patients were processed for RNA extraction and the 1836 bp fragment of the spike gene was amplified and sequenced. The mutations present were determined using the GISAID database. Prevalence ratios were estimated by fitting Poisson univariate and multivariate regression models to investigate associations between SARS-CoV-2 variant group (VOC, non-VOC) and disease outcome. Seventeen genetic variants were detected including VOC Alpha, Beta, Gamma and Delta, one variant of interest (VOI) (Lambda) and two previous VOI (A.2.5.1 and Zeta/P.2). Beta (34.77%), Delta (24.89%) and D614G (19%) variants were the most frequently detected. By June, Delta increased in frequency, displacing Beta. Disease severity increased significantly with age and VOC (PR =1.98, IC 95%: 1.33-3.05, p <0.05). Genomic surveillance allowed us to identify the upsurge of novel variants. Coinciding with the higher epidemic period, multiple variants were co-circulating. Although we cannot rule out that failure in the transmission containment measures occurred, the increase in the number of cases associated with the circulation of several variants, particularly the Beta and Delta variants is highly suggestive. A greater association of Beta variant with clinical severity and Delta variant with a greater transmissibility was observed.

8.
Phys Rev E ; 105(4-2): 045106, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35590587

ABSTRACT

We study the dynamics and pattern formation of a ferrofluid annulus enveloped by two nonmagnetic fluids in a Hele-Shaw cell, subjected to an in-plane crossed magnetic field configuration involving the combination of radial and azimuthal magnetic fields. A perturbative, second-order mode-coupling analysis is employed to investigate how the ferrofluid annulus responds to variations in the relative strength of the radial and azimuthal magnetic field components, as well as in the thickness of magnetic fluid ring. By tuning the magnetic field components and the annulus' thickness, we have found the development of several stationary annular shapes, presenting polygon-shaped structures typically having skewed, peaked fingers. Such fingered structures may vary their skewness, sharpness, and number and arise on the inner, outer, or even both boundaries of the annulus. In addition to controlling the morphologies of the ferrofluid annuli, the external field can be used to put the annulus into a rotational motion, with an angular velocity having prescribed magnitude, and direction. Our second-order theory is utilized to obtain a correction to the linear stability analysis prediction of such angular velocity, usually resulting in a decreased weakly nonlinear value as compared with the magnitude predicted by purely linear theory. These theoretical results suggest the use of magnetic-field-controlled ferrofluid annuli in Hele-Shaw cells as a potential laboratory for microscale applications related to the manipulation of shape-programmable magnetic fluid objects and tunable fluidic-mixing devices in confined environments.

9.
Phys Rev E ; 104(4-2): 045106, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34781440

ABSTRACT

Viscous fingering in radial Hele-Shaw cells is markedly characterized by the occurrence of fingertip splitting, where growing fingered structures bifurcate at their tips, via a tip-doubling process. A much less studied pattern-forming phenomenon, which is also detected in experiments, is the development of fingertip tripling, where a finger divides into three. We investigate the problem theoretically, and employ a third-order perturbative mode-coupling scheme seeking to detect the onset of tip-tripling instabilities. Contrary to most existing theoretical studies of the viscous fingering instability, our theoretical description accounts for the effects of viscous normal stresses at the fluid-fluid interface. We show that accounting for such stresses allows one to capture the emergence of tip-tripling events at weakly nonlinear stages of the flow. Sensitivity of fingertip-tripling events to changes in the capillary number and in the viscosity contrast is also examined.

10.
Phys Rev E ; 103(6-1): 063102, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34271760

ABSTRACT

We investigate the evolution of the interface separating two Newtonian fluids of different viscosities in two-dimensional Stokes flow driven by suction or injection. A second-order, mode-coupling theory is used to explore key morphological aspects of the emerging interfacial patterns in the stage of the flow that bridges the purely linear and fully nonlinear regimes. In the linear regime, our analysis reveals that an injection-driven expanding interface is stable, while a contracting motion driven by suction is unstable. Moreover, we find that the linear growth rate associated with this suction-driven instability is independent of the viscosity contrast between the fluids. However, second-order results tell a different story, and show that the viscosity contrast is crucial in determining the morphology of the interface. Our theoretical description is applicable to the entire range of viscosity contrasts, and provides insights on the formation of near-cusp pattern-forming structures. Reproduction of fully nonlinear, n-fold symmetric near-cuspidal shapes previously obtained through conformal mapping techniques substantiates the validity of our mode-coupling approach.

11.
Sensors (Basel) ; 21(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668745

ABSTRACT

Emotion recognition is benefitting from the latest research into physiological monitoring and wireless communications, among other remarkable achievements. These technologies can indeed provide solutions to protect vulnerable people in scenarios such as personal assaults, the abuse of children or the elderly, gender violence or sexual aggression. Cyberphysical systems using smart sensors, artificial intelligence and wearable and inconspicuous devices can serve as bodyguards to detect these risky situations (through fear-related emotion detection) and automatically trigger a protection protocol. As expected, these systems should be trained and customized for each user to ensure the best possible performance, which undoubtedly requires a gender perspective. This paper presents a specialized fear recognition system for women based on a reduced set of physiological signals. The architecture proposed is characterized by the usage of three physiological sensors, lightweight binary classification and the conjunction of linear (temporal and frequency) and non-linear features. Moreover, a binary fear mapping strategy between dimensional and discrete emotional information based on emotional self-report data is implemented to avoid emotional bias. The architecture is evaluated using a public multi-modal physiological dataset with two approaches (subject-dependent and subject-independent models) focusing on the female participants. As a result, the proposal outperforms the state-of-the-art in fear recognition, achieving a recognition rate of up to 96.33% for the subject-dependent model.


Subject(s)
Artificial Intelligence , Emotions , Fear , Recognition, Psychology , Aged , Child , Female , Humans , Monitoring, Physiologic
12.
Phys Rev E ; 104(6-2): 065113, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35030845

ABSTRACT

We analyze the morphology and dynamic behavior of the interface separating a ferrofluid and a nonmagnetic fluid in a Hele-Shaw cell, when crossed radial and azimuthal magnetic fields are applied. In addition to inducing the formation of a variety of eye-catching, complex interfacial structures, the action of the crossed fields makes the deformed ferrofluid droplet to rotate. Numerical simulations and perturbative mode-coupling theory are employed to look into early linear, intermediate weakly nonlinear, and fully nonlinear dynamic regimes of the pattern-forming process. We investigate how the system responds to variations in the viscosity difference between the fluids, the magnetic susceptibility of the ferrofluid, the effects of surface tension, and in the relative strength between radial and azimuthal applied magnetic fields. The role played by random perturbations at the initial conditions in determining the ultimate shape and dynamic stability of the spinning ferrofluid patterns is also studied.

13.
Phys Rev E ; 104(6-2): 065103, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35030922

ABSTRACT

We investigate the flow of a viscous ferrofluid annulus surrounded by two nonmagnetic fluids in a Hele-Shaw cell when subjected to an external radial magnetic field. The interfacial pattern formation dynamics of the system is determined by the interplay of magnetic and surface tension forces acting on the inner and outer boundaries of the annulus, favoring the coupling of the disjoint interfaces. Mode-coupling analysis is employed to examine both linear and weakly nonlinear stages of the flow. Linear stability analysis indicates that the trailing and leading annular boundaries are coupled already at the linear regime, revealing that perturbations arising in the outer interface may induce the emergence of deformed structures in the inner boundary. Moreover, second-order weakly nonlinear analysis is utilized to identify key nonlinear morphological features of the ferrofluid annulus. Our theoretical results show that linear, n-fold symmetric annular patterns having rounded edges are replaced by nonlinear polygonal-like shapes, presenting fairly sharp fingers. It is found that, as opposed to the linear patterns, the nonlinear peaky structures reach a stationary state, characterized by a growth saturation process induced by nonlinear effects. Furthermore, the response of the ferrofluid ring to changes in the thickness of the annulus, in the relative strength of magnetic and surface tensions forces, as well as in the magnetic susceptibility of the ferrofluid material, are also discussed.

14.
Phys Rev E ; 102(6-1): 063102, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33466051

ABSTRACT

During the past few years, researchers have been proposing time-dependent injection strategies for stabilizing or manipulating the development of viscous fingering instabilities in radial Hele-Shaw cells. Most of these studies investigate the displacement of Newtonian fluids and are entirely based on linear stability analyses. In this work, linear stability theory and variational calculus are used to determine closed-form expressions for the proper time-dependent injection rates Q(t) required to either minimize the interface disturbances or to control the number of emerging fingers. However, this is done by considering that the displacing fluid is non-Newtonian and has a time-varying viscosity. Moreover, a perturbative third-order mode-coupling approach is employed to examine the validity and effectiveness of the controlling protocols dictated by these Q(t) beyond the linear regime and at the onset of nonlinearities.

15.
Soft Matter ; 15(27): 5495-5510, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31241633

ABSTRACT

Recent studies on quasi-two-dimensional (2D) fluid flows in Hele-Shaw cells revealed the emergence of the so-called elastic fingering phenomenon. This pattern-forming process takes place when a reaction occurs at the fluid-fluid interface, transforming it into an elastic gel-like boundary. The interplay of viscous and elastic forces leads to the development of pattern morphologies significantly different from those seen in the conventional, purely hydrodynamic viscous fingering problem. In this work, we investigate the occurrence of elastic fingering for radial fluid displacements in a 3D uniform porous medium. A perturbative third-order mode-coupling approach is employed to examine how the combined action of viscous and elastic effects influences the linear stability of the interface, and the weakly nonlinear pattern formation in such a 3D environment. In addition, a variational method is used to determine how to minimize the growth of interfacial perturbation amplitudes via a time-dependent injection rate scheme.

16.
Phys Rev E ; 99(2-1): 022608, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30934336

ABSTRACT

A thin elastic membrane lying on a fluid substrate deviates from its flat geometry on lateral compression. The compressed membrane folds and wrinkles into many distinct morphologies. We study a magnetoelastic variant of such a problem where a viscous ferrofluid, surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. Elasticity comes into play when the fluids are brought into contact, and due to a chemical reaction, the interface separating them becomes a gel-like elastic layer. A perturbative linear stability theory is used to investigate how the combined action of magnetic and elastic forces can lead to the development of smooth, low-amplitude, sinusoidal wrinkles at the elastic interface. In addition, a nonperturbative vortex sheet approach is employed to examine the emergence of highly nonlinear, magnetically driven, wrinkling and folding equilibrium shape structures. A connection between the magnetoelastic shape solutions induced by a radial magnetic field and those produced by nonmagnetic means through centrifugal forces is also discussed.

17.
Phys Rev E ; 96(2-1): 023103, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28950512

ABSTRACT

We study a family of generalized elasticalike equilibrium shapes that arise at the interface separating two fluids in a curved rotating Hele-Shaw cell. This family of stationary interface solutions consists of shapes that balance the competing capillary and centrifugal forces in such a curved flow environment. We investigate how the emerging interfacial patterns are impacted by changes in the geometric properties of the curved Hele-Shaw cell. A vortex-sheet formalism is used to calculate the two-fluid interface curvature, and a gallery of possible shapes is provided to highlight a number of peculiar morphological features. A linear perturbation theory is employed to show that the most prominent aspects of these complex stationary patterns can be fairly well reproduced by the interplay of just two interfacial modes. The connection of these dominant modes to the geometry of the curved cell, as well as to the fluid dynamic properties of the flow, is discussed.

18.
Phys Rev E ; 95(3-1): 033104, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28415178

ABSTRACT

The usual viscous fingering instability arises when a fluid displaces another of higher viscosity in a flat Hele-Shaw cell, under sufficiently large capillary number conditions. In this traditional framing, the reverse flow case (more viscous fluid displacing a less viscous one) and the viscosity-matched situation (fluids of equal viscosities) are stable. We revisit this classical fluid dynamic problem, now considering flow in a nonflat Hele-Shaw cell. For a specific nonflat environment, we show that both the reverse and the viscosity-matched flows can become unstable, even at low capillary number. This peculiar fluid fingering instability is driven by the combined action of capillary effects and geometric properties of the nonflat Hele-Shaw cell. Our theoretical results indicate that the Hele-Shaw cell geometry significantly impacts the linear stability and nonlinear pattern-forming dynamics of the system. This suggests that the geometry of the medium plays an important role in favoring the occurrence of fingering patterns in nonflat, confined fluid flows.

19.
Phys Rev E ; 94(5-1): 053105, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27967138

ABSTRACT

Rotating fluid flows under two-dimensional homogeneous porous media conditions (or in a rotating Hele-Shaw cell) reveal the development of complex interfacial fingering patterns. These pattern-forming structures are characterized by the occurrence of finger competition events, finger pinch-off episodes, as well as by the production of satellite droplets. In this work, we use intensive numerical simulations to investigate how these fully nonlinear pattern growth phenomena are altered by the presence of permeability heterogeneities in the rotating porous medium. This is done by employing a diffuse-interface Darcy-Cahn-Hilliard description of the problem and considering a permeability field presenting a log-Gaussian distribution, characterized by a variance s and a correlation length l. We study how the heterogeneity measures s and l couple to the governing hydrodynamic dimensionless parameters of the problem and introduce important changes on the pattern formation dynamics of the system.

20.
Phys Rev E ; 94(3-1): 033110, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27739751

ABSTRACT

The elastic fingering phenomenon occurs when two confined fluids are brought into contact, and due to a chemical reaction, the interface separating them becomes elastic. We study elastic fingering pattern formation in Newtonian fluids flowing in a lifting (time-dependent gap) Hele-Shaw cell. Using a mode-coupling approach, nonlinear effects induced by the interplay between viscous and elastic forces are investigated and the weakly nonlinear behavior of the fluid-fluid interfacial patterns is analyzed. Our results indicate that the existence of the elastic interface allows the development of unexpected morphological behaviors in such Newtonian fluid flow systems. More specifically, we show that depending on the values of the governing physical parameters, the observed elastic fingering structures are characterized by the occurrence of either finger tip splitting or side branching. The impact of the elastic interface on finger-competition events is also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...