Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Endocrinol Metab ; 319(4): E709-E720, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32830549

ABSTRACT

Caloric restriction can decrease the incidence of metabolic diseases, such as obesity and Type 2 diabetes mellitus. The mechanisms underlying the benefits of caloric restriction involved in insulin secretion and glucose homeostasis are not fully understood. Intercellular communication within the islets of Langerhans, mediated by Connexin36 (Cx36) gap junctions, regulates insulin secretion dynamics and glucose homeostasis. The goal of this study was to determine whether caloric restriction can protect against decreases in Cx36 gap junction coupling and altered islet function induced in models of obesity and prediabetes. C57BL6 mice were fed with a high-fat diet (HFD), showing indications of prediabetes after 2 mo, including weight gain, insulin resistance, and elevated fasting glucose and insulin levels. Subsequently, mice were submitted to 1 mo of 40% caloric restriction (2 g/day of HFD). Mice under 40% caloric restriction showed reversal in weight gain and recovered insulin sensitivity, fasting glucose, and insulin levels. In islets of mice fed the HFD, caloric restriction protected against obesity-induced decreases in gap junction coupling and preserved glucose-stimulated calcium signaling, including Ca2+ oscillation coordination and oscillation amplitude. Caloric restriction also promoted a slight increase in glucose metabolism, as measured by increased NAD(P)H autofluorescence, as well as recovering glucose-stimulated insulin secretion. We conclude that declines in Cx36 gap junction coupling that occur in obesity can be completely recovered by caloric restriction and obesity reversal, improving Ca2+ dynamics and insulin secretion regulation. This suggests a critical role for caloric restriction in the context of obesity to prevent islet dysfunction.


Subject(s)
Calcium Signaling , Caloric Restriction , Gap Junctions/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Prediabetic State/metabolism , Animals , Cell Communication , Connexins/metabolism , Diet, High-Fat , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Gap Junction delta-2 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...