Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cancer ; 138(8): 1928-35, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26620301

ABSTRACT

In colorectal carcinoma (CRC), 35% of cases are known to have a hereditary component, while a lower proportion (∼ 5%) can be explained by known genetic factors. In this study, copy number variations (CNVs) were evaluated in 45 unrelated patients with clinical hypothesis of Lynch syndrome (Amsterdam or Bethesda criteria); negative for MLH1, MSH2, MSH6, PMS2, CHEK2*1100delC and TP53 pathogenic mutations; aiming to reveal new predisposing genes. Analyses with two different microarray platforms (Agilent 180K and Affymetrix CytoScan HD) revealed 35 rare CNVs covering 67 known genes in 22 patients. Gains (GALNT6 and GALNT11) and losses (SEMA3C) involving the same gene families related to CRC susceptibility were found among the rare CNVs. Segregation analysis performed on four relatives from one family suggested the involvement of GALNT11 and KMT2C in those at risk of developing CRC. Notably, in silico molecular analysis revealed that 61% (41/67) of the genes covered by rare CNVs were associated with cancer, mainly colorectal (17 genes). Ten common SNPs, previously associated with CRC, were genotyped in 39 index patients and 100 sporadic CRC cases. Although no significant, an increased number of risk alleles was detected in the index cases compared with the sporadic CRC patients. None of the SNPs were covered by CNVs, suggesting an independent effect of each alteration in cancer susceptibility. In conclusion, rare germline CNVs and common SNPs may contribute to an increased risk for hereditary CRC in patients with mismatch repair proficiency.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Copy Number Variations/genetics , Genetic Predisposition to Disease/genetics , Mutation , DNA Mismatch Repair , Genetic Loci , Genotype , Humans , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide
2.
Tumour Biol ; 37(3): 3145-53, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26427657

ABSTRACT

Despite one third of breast (BC) and colorectal cancer (CRC) cases having a hereditary component, only a small proportion can be explained by germline mutations. The aim of this study was to identify potential genomic alterations related to cancer predisposition. Copy number variations (CNVs) were interrogated in 113 unrelated cases fulfilling the criteria for hereditary BC/CRC and presenting non-pathogenic mutations in BRCA1, BRCA2, MLH1, MSH2, TP53, and CHEK2 genes. An identical germline deep intronic deletion of ROBO1 was identified in three index patients using two microarray platforms (Agilent 4x180K and Affymetrix CytoScan HD). The ROBO1 deletion was confirmed by quantitative PCR (qPCR). Six relatives were also evaluated by CytoScan HD Array. Genomic analysis confirmed a co-segregation of the ROBO1 deletion with the occurrence of cancer in two families. Direct sequencing revealed no pathogenic ROBO1 point mutations. Transcriptomic analysis (HTA 2.0, Affymetrix) in two breast carcinomas from a single patient revealed ROBO1 down-expression with no splicing events near the intronic deletion. Deeper in silico analysis showed several enhancer regions and a histone methylation mark in the deleted region. The ROBO1 deletion in a putative transcriptional regulatory region, its down-expression in tumor samples, and the results of the co-segregation analysis revealing the presence of the alteration in affected individuals suggest a pathogenic effect of the ROBO1 in cancer predisposition.


Subject(s)
Breast Neoplasms/genetics , Colorectal Neoplasms/genetics , Gene Deletion , Nerve Tissue Proteins/genetics , Receptors, Immunologic/genetics , Adult , Aged , Colorectal Neoplasms/etiology , DNA Copy Number Variations , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Roundabout Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...