Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1120179, 2023.
Article in English | MEDLINE | ID: mdl-36815878

ABSTRACT

Introduction: Cell membrane-covered biomimetic nanosystems have allowed the development of homologous nanostructures to bestow nanoparticles with enhanced biointerfacing capabilities. The stability of these structures, however, still represents a challenge for the scientific community. This study is aimed at developing and optimizing cell derived membrane-coated nanostructures upon applying design of experiments (DoE) to improve the therapeutic index by homotypic targeting in cancer cells. Methods: Important physicochemical features of the extracted cell membrane from tumoral cells were assessed by mass spectrometry-based proteomics. PLGA-based nanoparticles encapsulating temozolomide (TMZ NPs) were successfully developed. The coating technology applying the isolated U251 cell membrane (MB) was optimized using a fractional two-level three-factor factorial design. All the formulation runs were systematically characterized regarding their diameter, polydispersity index (PDI), and zeta potential (ZP). Experimental conditions generated by DoE were also subjected to morphological studies using negative-staining transmission electron microscopy (TEM). Its short-time stability was also assessed. MicroRaman and Fourier-Transform Infrared (FTIR) spectroscopies and Confocal microscopy were used as characterization techniques for evaluating the NP-MB nanostructures. Internalization studies were carried out to evaluate the homotypic targeting ability. Results and Discussion: The results have shown that nearly 80% of plasma membrane proteins were retained in the cell membrane vesicles after the isolation process, including key proteins to the homotypic binding. DoE analysis considering acquired TEM images reveals that condition run five should be the best-optimized procedure to produce the biomimetic cell-derived membrane-coated nanostructure (NP-MB). Storage stability for at least two weeks of the biomimetic system is expected once the original characteristics of diameter, PDI, and ZP, were maintained. Raman, FTIR, and confocal characterization results have shown the successful encapsulation of TMZ drug and provided evidence of the effective coating applying the MB. Cell internalization studies corroborate the proteomic data indicating that the optimized NP-MB achieved specific targeting of homotypic tumor cells. The structure should retain the complex biological functions of U251 natural cell membranes while exhibiting physicochemical properties suitable for effective homotypic recognition. Conclusion: Together, these findings provide coverage and a deeper understanding regarding the dynamics around extracted cell membrane and polymeric nanostructures interactions and an in-depth insight into the cell membrane coating technology and the development of optimized biomimetic and bioinspired nanostructured systems.

2.
ACS Appl Bio Mater ; 5(7): 3371-3383, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35732506

ABSTRACT

COVID-19 has resulted in more than 490 million people being infected worldwide, with over 6 million deaths by April 05th, 2022. Even though the development of safe vaccine options is an important step to reduce viral transmission and disease progression, COVID-19 cases will continue to occur, and for those cases, efficient treatment remains to be developed. Here, a drug repurposing strategy using nanotechnology is explored to develop a therapy for COVID-19 treatment. Nanoparticles (NPs) based on PLGA for fingolimod (FTY720) encapsulation show a size of ∼150 nm and high drug entrapment (∼90%). The NP (NP@FTY720) can control FTY720 release in a pH-dependent manner. Cytotoxicity assays using different cell lines show that NP@FTY720 displays less toxicity than the free drug. Flow cytometry and confocal microscopy reveal that NPs are actively internalized mostly through caveolin-mediated endocytosis and macropinocytosis pathways and co-localized with lysosomes. Finally, NP@FTY720 not only exhibits anti-SARS-CoV-2 activity at non-cytotoxic concentrations, but its biological potential for viral infection inhibition is nearly 70 times higher than that of free drug treatment. Based on these findings, the combination of drug repurposing and nanotechnology as NP@FTY720 is presented for the first time and represents a promising frontline in the fight against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Fingolimod Hydrochloride , Drug Delivery Systems/methods , Fingolimod Hydrochloride/pharmacology , Humans , SARS-CoV-2
3.
Nanotoxicology ; 16(1): 73-87, 2022 02.
Article in English | MEDLINE | ID: mdl-35138974

ABSTRACT

The use of mass spectrometry-based proteomics has been increasingly applied in nanomaterials risk assessments as it provides a proteome-wide overview of the molecular disturbances induced by its exposure. Here, we used this technique to gain detailed molecular insights into the role of ROS as an effector of AgNP toxicity, by incubating Bend3 cells with AgNP in the absence or presence of an antioxidant N-acetyl L-cystein (NAC). ROS generation is a key player in AgNP-induced toxicity, as cellular homeostasis was kept in the presence of NAC. By integrating MS/MS data with bioinformatics tools, in the absence of NAC, we were able to pinpoint precisely which biological pathways were affected by AgNP. Cells respond to AgNP-induced ROS generation by increasing their antioxidant pool, via NRF2 pathway activation. Additionally, cell proliferation-related pathways were strongly inhibited in a ROS-dependent manner. These findings reveal important aspects of the AgNP mechanism of action at the protein level.


Subject(s)
Metal Nanoparticles , Silver , Antioxidants , Metal Nanoparticles/toxicity , Proteome , Reactive Oxygen Species/metabolism , Silver/toxicity , Tandem Mass Spectrometry
4.
Colloids Surf B Biointerfaces ; 210: 112254, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34896692

ABSTRACT

Nanomaterials have emerged as promising candidates for cancer therapy and diagnosis as they can solve long-term issues such as drug solubility, systemic distribution, tumor acquired resistance, and improve the performance of diagnostic methods. Among inorganic nanomaterials, AgNPs have been extensively studied in the context of cancer treatment and the reported results have raised exciting expectations. In this review, we provide an overview of the recent research on AgNPs antitumoral properties, their application in different cancer treatment modalities, their potential in biosensors development, and also highlight the main challenges and possible strategies to enable its translation to clinical use.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanostructures , Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/drug therapy , Silver
5.
Nanotoxicology ; 12(7): 781-795, 2018 09.
Article in English | MEDLINE | ID: mdl-29996704

ABSTRACT

Although multiple studies have reported the toxicological effects and underlying mechanisms of toxicity of silver nanoparticles (AgNP) in a variety of organisms, the interactions of AgNP with environmental contaminants such as cadmium are poorly understood. We used biochemical assays and mass spectrometry-based proteomics to assess the cellular and molecular effects induced by a co-exposure of HepG2 cells to AgNP and cadmium. Cell viability and energy homeostasis were slightly affected after a 4-h exposure to AgNP, cadmium, or a combination of the two; these endpoints were substantially altered after a 24-h co-exposure to AgNP and cadmium, while exposure to one of the two contaminants led only to minor changes. Proteomics analysis followed the same trend: while a 4-h exposure induced minor protein deregulation, a 24-h exposure to a combination of AgNP and cadmium deregulated 43% of the proteome. The toxicity induced by a combined exposure to AgNP and cadmium involved (1) inactivation of Nrf2, resulting in downregulation of antioxidant defense and proteasome-related proteins, (2) metabolic adaptation and ADP/ATP imbalance, and (3) increased protein synthesis possibly to reestablish homeostasis. The adaptation strategy was not sufficient to restore ADP/ATP homeostasis and to avoid cell death.


Subject(s)
Cadmium/toxicity , Energy Metabolism/drug effects , Hepatocytes/drug effects , Metal Nanoparticles/toxicity , Proteome/drug effects , Silver/toxicity , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Antioxidants/metabolism , Cell Survival/drug effects , Hep G2 Cells , Hepatocytes/metabolism , Humans , Proteomics
6.
Toxicol In Vitro ; 40: 134-143, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28063819

ABSTRACT

Toxicological interaction represents a challenge to toxicology, particularly for novel contaminants. There are no data whether silver nanoparticles (AgNPs), present in a wide variety of products, can interact and modulate the toxicity of ubiquitous contaminants, such as nonessential metals. In the current study, we investigated the toxicological interactions of AgNP (size=1-2nm; zeta potential=-23mV), cadmium and mercury in human hepatoma HepG2 cells. The results indicated that the co-exposures led to toxicological interactions, with AgNP+Cd being more toxic than AgNP+Hg. Early (2-4h) increases of ROS (DCF assay) and mitochondrial O2- levels (Mitosox® assay) were observed in the cells co-exposed to AgNP+Cd/Hg, in comparison to control and individual contaminants, but the effect was partially reverted in AgNP+Hg at the end of 24h-exposure. In addition, decreases of mitochondrial metabolism (MTT), cell viability (neutral red uptake assay), cell proliferation (crystal violet assay) and ABC-transporters activity (rhodamine accumulation assay) were also more pronounced in the co-exposure groups. Foremost, co-exposure to AgNP and metals potentiated cell death (mainly by necrosis) and Hg2+ (but not Cd2+) intracellular levels (ICP-MS). Therefore, toxicological interactions seem to increase the toxicity of AgNP, cadmium and mercury.


Subject(s)
Cadmium/toxicity , Mercury/toxicity , Metal Nanoparticles/toxicity , Silver/toxicity , Cell Death/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Interactions , Hep G2 Cells , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...