Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 22(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36502129

ABSTRACT

The synovial fluid (SF) analysis involves a series of chemical and physical studies that allow opportune diagnosing of septic, inflammatory, non-inflammatory, and other pathologies in joints. Among the variety of analyses to be performed on the synovial fluid, the study of viscosity can help distinguish between these conditions, since this property is affected in pathological cases. The problem with viscosity measurement is that it usually requires a large sample volume, or the necessary instrumentation is bulky and expensive. This study compares the viscosity of normal synovial fluid samples with samples with infectious and inflammatory pathologies and classifies them using an ANN (Artificial Neural Network). For this purpose, a low-cost, portable QCR-based sensor (10 MHz) was used to measure the viscous responses of the samples by obtaining three parameters: Δf, ΔΓ (parameters associated with the viscoelastic properties of the fluid), and viscosity calculation. These values were used to train the algorithm. Different versions of the ANN were compared, along with other models, such as SVM and random forest. Thirty-three samples of SF were analyzed. Our study suggests that the viscosity characterized by our sensor can help distinguish infectious synovial fluid, and that implementation of ANN improves the accuracy of synovial fluid classification.


Subject(s)
Synovial Fluid , Synovial Fluid/chemistry , Viscosity
2.
Gels ; 8(11)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36354626

ABSTRACT

Hydrogel biomaterials have found use in various biomedical applications partly due to their biocompatibility and tuneable viscoelastic properties. The ideal rheological properties of hydrogels depend highly on the application and should be considered early in the design process. Rheometry is the most common method to study the viscoelastic properties of hydrogels. However, rheometers occupy much space and are costly instruments. On the other hand, quartz crystal resonators (QCRs) are devices that can be used as low-cost, small, and accurate sensors to measure the viscoelastic properties of fluids. For this reason, we explore the capabilities of a low-cost and compact QCR sensor to sense and characterise the gelation process of hydrogels while using a low sample amount and by sensing two different crosslink reactions: covalent bonds and divalent ions. The gelation of covalently crosslinked mucin hydrogels and physically crosslinked alginate hydrogels could be monitored using the sensor, clearly distinguishing the effect of several parameters affecting the viscoelastic properties of hydrogels, including crosslinking chemistry, polymer concentrations, and crosslinker concentrations. QCR sensors offer an economical and portable alternative method to characterise changes in a hydrogel material's viscous properties to contribute to this type of material design, thus providing a novel approach.

3.
Sensors (Basel) ; 21(21)2021 Nov 07.
Article in English | MEDLINE | ID: mdl-34770707

ABSTRACT

A novel compact device with spectrum analyzer characteristics has been designed, which allows the measuring of the maximum power received in multiple narrow frequency bands of 300 kHz, recording the entire spectrum from 78 MHz to 6 GHz; the device is capable of measuring the entire communications spectrum and detecting multiple sources of electromagnetic fields using the same communications band. The proposed device permits the evaluation of the cross-talk effect that, in conventional exposimeters, generates a mistake estimation of electromagnetic fields. The device was calibrated in an anechoic chamber for far-fields and was validated against a portable spectrum analyzer in a residential area. A strong correlation between the two devices with a confidence higher than 95% was obtained; indicating that the device could be considered as an important tool for electromagnetic field studies.

4.
Sensors (Basel) ; 21(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924605

ABSTRACT

Viscosity variation in human fluids, such as Synovial Fluid (SF) or Cerebrospinal Fluid (CSF), can be used as a diagnostic factor; however, the sample volume obtained for analysis is usually small, making it difficult to measure its viscosity. On the other hand, Quartz Crystal Resonators (QCR) have been used widely in sensing applications due to their accuracy, cost, and size. This work provides the design and validation of a new viscosity measurement system based on quartz crystal resonators for low volume fluids, leading to the development of a sensor called "ViSQCT" as a prototype for a new medical diagnostic tool. The proposed method is based on measuring the resonance frequency at the crystal's maximum conductance point through a frequency sweep, where crystals with 10 MHz fundamental resonance frequency were used. For validation purposes, artificial fluids were developed to simulate SFs and CFs in healthy and pathological conditions as experiment phantoms. A commercial QCR based system was also used for validation since its methodology differs from ours. A conventional rotational viscometer was used as a reference for calibration purposes. ViSQCT demonstrates the capability to measure the sample's viscosity differentiation between healthy and pathological fluid phantoms and shows that it can be used as a basis for a diagnostic method of several pathologies related to the studied biological fluids. However, some performance differences between both QCR-based systems compared to the reference system deserves further investigation.


Subject(s)
Quartz , Synovial Fluid , Humans , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL