Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 42(17): 3674-3683, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38749821

ABSTRACT

The Zika virus (ZIKV) is considered a public health problem worldwide due to its association with the development of microcephaly and the Guillain-Barré syndrome. Currently, there is no specific treatment or vaccine approved to combat this disease, and thus, developing safe and effective vaccines is a relevant goal. In this study, a multi-epitope protein called rpZDIII was designed based on a series of ZIKV antigenic sequences, a bacterial carrier, and linkers. The analysis of the predicted 3D structure of the rpZDIII chimeric antigen was performed on the AlphaFold 2 server, and it was produced in E. coli and purified from inclusion bodies, followed by solubilization and refolding processes. The yield achieved for rpZDIII was 11 mg/L in terms of pure soluble recombinant protein per liter of fermentation. rpZDIII was deemed immunogenic since it induced serum IgG and IgM responses in mice upon subcutaneous immunization in a three-dose scheme. Moreover, sera from mice immunized with rpZDIII showed neutralizing activity against ZIKV. Therefore, this study reveals rpZDIII as a promising immunogen for the development of a rationally designed multi-epitope vaccine against ZIKV, and completion of its preclinical evaluation is guaranteed.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Antigens, Viral , Zika Virus Infection , Zika Virus , Animals , Zika Virus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Zika Virus Infection/prevention & control , Zika Virus Infection/immunology , Antigens, Viral/immunology , Antigens, Viral/genetics , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Epitopes/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , Escherichia coli/genetics , Escherichia coli/metabolism , Immunoglobulin M/immunology , Immunoglobulin M/blood , Mice, Inbred BALB C
2.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38543088

ABSTRACT

Subunit vaccines stand as a leading approach to expanding the current portfolio of vaccines to fight against COVID-19, seeking not only to lower costs but to achieve long-term immunity against variants of concern and have the main attributes that could overcome the limitations of the current vaccines. Herein a chimeric protein targeting S1 and S2 epitopes, called LTp50, was designed as a convenient approach to induce humoral responses against SARS-CoV-2. LTp50 was produced in recombinant Escherichia coli using a conventional pET vector, recovering the expected antigen in the insoluble fraction. LTp50 was purified by chromatography (purity > 90%). The solubilization and refolding stages helped to obtain a stable protein amenable for vaccine formulation. LTp50 was adsorbed onto alum, resulting in a stable formulation whose immunogenic properties were assessed in BALB/c mice. Significant humoral responses against the S protein (BA.5 variant) were detected in mice subjected to three subcutaneous doses (10 µg) of the LTp50/alum formulation. This study opens the path for the vaccine formulation optimization using additional adjuvants to advance in the development of a highly effective anti-COVID-19 vaccine directed against the antigenic regions of the S protein, which are less prone to mutations.

SELECTION OF CITATIONS
SEARCH DETAIL
...